POLYNOMIAL SIEVE AND ITS APPLICATION TO Bateman-Horn CONJECTURE AND Goldbach CONJECTURE

ZHANG MINGZHI

 Mathematics Department , Sichuan University, Chengdu , Sichuan Province, 610064 , P.R. of China. email : mingzhi zhang1942@yahoo.com

ABSTRACT

For a set *E* of integers, for which $\omega(n) \geq k$, $\forall n \in E, k \in \mathbb{Z}^+$, where $\omega(n)$ is the number of the different prime factors of n, We give a sieve, which can separate the ones for which $\omega(n) = k$ from others.

 Applying this sieve to Bateman-Horn conjecture and Goldbach conjecture , we obtain an explicit asymptotic formula with both the main term and the error term . This provides a possible starting point for dealing with some famous problems, Like twin primes, primes of the form $n^2 + a$, Goldbach conjecture and so on.

Key words and phrases : sieve; Bateman-Horn conjecture; Goldbach conjecture ; explicit asymptotic formula; main term; error term; twin primes; primes of the form $n^2 + a$. 2010 Mathematics Subject Classification : 11N32, 11N35, 11P32

1. Introduction

There are a lot of famous problems in number theory which puzzled people in centuries. For example, the infiniteness of the primes of the form $n^2 + 1$, the infiniteness of the twin primes, the infiniteness of the integers *n* for which $n, n + 2, n + 6$ are all primes and so on.

 G.H.Hardy and J.E.Littlewood [5], [21] had given a series of heuristic asymptotic formulas for the additive problems on primes using circle method.

 In 1962 , P.T.Bateman and R.A.Horn [1] had given a famous heuristic asymptotic formula concerning the distribution of primes. A lot of problems are special cases of it. Their conjecture is as follows .

Suppose $P_1, P_2, ..., P_k \in \mathbb{Z}[x]$ and they satisfy the following three conditions

(a) The leading coefficient of every P_i is positive.

- (b) Every P_i is irreducible in $\mathbf{Q}[x]$ and no two of them differ by a constant factor .
- (c) There is no prime p such that p divides the product $P(n) = P_1(n)P_2(n) ... P_k(n)$ for all $n \in \mathbb{Z}^+$.

Let h_i be the degree of $P_i(n)$ and $Q(P_1, P_2, ..., P_k; X)$ denote the number of positive integers $n (1 \le n \le X)$ such that $P_1(n)$, $P_2(n)$, ..., $P_k(n)$ are all primes. Bateman and Horn obtained the following heuristic asymptotic formula by a probabilistic consideration

 $Q(P_1, P_2, ..., P_k; X) \sim h_1^{-1} h_2^{-1} ... h_k^{-1} C(P_1, P_2, ..., P_k) \int_2^X (\log u)^{-k} du$ (1) where

$$
C(P_1, P_2, \dots, P_k) = \prod_p \left\{ (1 - \frac{\rho(p)}{p}) (1 - \frac{1}{p})^{-k} \right\} \tag{2}
$$

where $\rho(p)$ denote the number of the solutions of the congruence $P(x) \equiv 0 \pmod{p}$ (3)

and *p* ranges over all primes .

An upper bound for $Q(P_1, P_2, ..., P_k; X)$ had been found [16],[17]

$$
Q(P_1, P_2, ..., P_k; X) \le 2^k k! C(P_1, P_2, ..., P_k) \{1 + o(1)\} X / (\log X)^k
$$

but, as I known , no nontrivial lower bound has been found .

By similar consideration, we can deal with the following sum

$$
S(P_1, P_2, ..., P_k; X) = \sum_{1 \le n \le X} \Lambda(P_1(n)) \Lambda(P_2(n)) \cdots \Lambda(P_k(n))
$$
 (4)

where $\Lambda(n)$ is the von Mangoldt function and obtain a similar heuristic asymptotic formula

$$
S(P_1, P_2, ..., P_k; X) \sim C(P_1, P_2, ..., P_k) \cdot X \tag{5}
$$

S.Baier [6] proved that (1) and (5) are equivalent .

 In this paper , we give a sieve , which can generate an explicit asymptotic formula with both the main term and the error term of $S(P_1, P_2, ..., P_k; X)$. This provides a possible starting point for dealing with some famous problems, Like twin primes, primes of the form $n^2 + 1$ and so on . .

2. An Identity of Arithmetic Function and the Polynomial Sieve

 As the analytic form of the Fundamental Theorem of Arithmetic, the Chebyshev's Identity plays an irreplaceable role .

$$
A * 1 = L \tag{6}
$$

By differentiation of (6) , we obtain Selberg's identity

$$
LA + A * A = L^2 * \mu \tag{7}
$$

where μ is the Möbius function.

 Starting from (6) and (7) , we can prove the Prime Number Theorem by analytic or elementary methods [13],[14],[15]. Here , we choose a slightly different way.

We denote by e_1 the unit of arithmetic functions and by 1 the function for which $1(n) = 1$ for all $n \in \mathbb{Z}^+$. We have

$$
\mu * 1 = e_1 \tag{8}
$$

By differentiation of (8) and $Le_1 = 0$ we obtain the well-known identity

$$
\Lambda = -L\mu \ast 1 \tag{A_1}
$$

or

$$
\mu * \Lambda = -L\mu \tag{9}
$$

By differentiation of (9) , we obtain

$$
\mu * (A * A - LA) = L^2 \mu \tag{10}
$$

or

$$
\Lambda^{*2} = \Lambda \ * \ \Lambda = L^2 \mu \ * \ 1 + L\Lambda \tag{A_2}
$$

By differentiation of (10) further, from (9) and (10) we obtain

$$
\mu * (A^{*3} - 3A * LA + L^2A) = -L^3 \mu \tag{11}
$$

or

$$
\Lambda^{*3} = \Lambda \, * \, \Lambda \, * \, \Lambda = -L^3 \mu \, * \, 1 \, + 3\Lambda \, * \, L\Lambda \, - \, L^2 \Lambda \tag{A_3}
$$

Generally, by $k - 1$ times differentiation of (9), we obtain

$$
\sum_{0 \le i \le k-1} {k-1 \choose i} L^{k-1-i} \mu * L^i \Lambda = -L^k \mu \tag{12}
$$

(12) is a recursive formula for $L^l\mu$, From (9), (10), (11) and (12) we can obtain the following identity by induction

Theorem 1. For every positive integer k , the following arithmetic function identity holds

$$
A^{*k} = (-1)^k L^k \mu * 1 + B_k \qquad (A_k)
$$

where

$$
B_k = \sum_{\substack{i_1 + i_2 + \dots + i_t + j_1 + j_2 + \dots + j_t = k \\ j_1 + j_2 + \dots + j_t < k, j_r \ge 1 \ (1 \le r \le t)}} a(k, i_1, i_2, \dots, i_t, j_1, j_2, \dots, j_t) \cdot L^{i_1} \Lambda^{*j_1} * L^{i_2} \Lambda^{*j_2} * (1 \le r \le t)} \tag{13}
$$

where $a(k, i_1, i_2, ..., i_t, j_1, j_2, ..., j_t)$ are integers.

Remark. In every term of B_k , the sum of the exponents of Λ is less than k. We denote by $\omega(n)$ the number of the different prime factors of n. If $\omega(n) \geq k$, then $B_k(n) = 0$ by the pigeon hole principle. From (A_k) , we have

$$
\Lambda^{*k}(n) = (-1)^k \sum_{d \,|\, n} \mu(d) (\log d)^k \tag{14}
$$

If $\omega(n) = k$, $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$, p_i are different primes, from (14), we

obtain

$$
k! \cdot \log p_1 \cdot \log p_2 \cdot \dots \cdot \log p_k
$$

= $\sum_{1 \le i \le k} (-1)^{k+i} \sum_{1 \le j_1 < j_2 < \dots < j_i \le k} (\log p_{j_1} + \dots + \log p_{j_i})^k$ (15)

which is equivalent to the following identity of polynomials in k variables

$$
k! \; x_1 x_2 \ldots x_k = \sum_{1 \le i \le k} (-1)^{k+i} \sum_{1 \le j_1 < j_2 < \cdots < j_i \le k} (x_{j_1} + \cdots + x_{j_i})^k \tag{16}
$$

If $\omega(n) = t > k$, then both sides of (14) vanish ([15], p. 47). In this case , the equivalent polynomial identity is

$$
0 = \sum_{1 \le i \le t} (-1)^i \sum_{1 \le j_1 < j_2 < \dots < j_i \le t} (x_{j_1} + \dots + x_{j_i})^k \tag{17}
$$

Therefore, for any set E of integers, for which $\omega(n) \geq k$, $\forall n \in E$, acting (A_k) on the integers of E, we can separate the ones for which $\omega(n) = k$ from others . If we consider the sum over \bm{E} , from (14) we get

$$
\sum_{n\in E,\omega(n)=k} \Lambda^{*k}(n) = (-1)^k \sum_{n\in E} \sum_{d\mid n} \mu(d) (\log d)^k \tag{18}
$$

 So, (18) provides some kind of sieve . We call it polynomial sieve from the discussion above.

Golomb [8] had obtained a result similar to (14).

3. Some lemmas

C . Hooley [12] had given a formula for quadratic polynomials in his study on the sum $\sum_{n\leq X}\tau(n^2+a)$, where $\tau(n)$ is the number of divisors of n . We generalize his result slightly and the proof is almost unchanged.

Lemma 1. (C. Hooley) Let $P(n)$ be a polynomial with integral coefficients, $d \in \mathbf{Z}^+$, $X \in \mathbf{R}^+$ and

$$
T_P(d, X) = \sum_{P(n) \equiv 0 \pmod{d}} 1
$$
 (19)

Then we have

$$
T_P(d, X) = X \frac{\rho(d)}{d} + \Psi_P(d, X) - \Phi_P(d) \tag{20}
$$

where $\rho(d)$ is the number of the solutions of the congruence $P(x) \equiv 0 \pmod{d}$ and

$$
\Psi_P(d, X) = \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \le d}} \psi(\frac{X - \nu}{d}) \tag{21}
$$

$$
\Phi_P(d) = \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \le d}} \psi(\frac{-\nu}{d}) \tag{22}
$$

where $\psi(u) = \frac{1}{2} - \{ u \}$, $\{ u \}$ is the fraction part of u .

Proof.
$$
T_P(d, X) = \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \le d}} \sum_{\substack{1 \le n \le X \\ 1 \le n \le X}} 1
$$

\n
$$
= \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \le d}} \left(\frac{X - \nu}{d} \right) + 1
$$

\n
$$
= \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \le d}} \left(\frac{X - \nu}{d} \right) - \left(\frac{-\nu}{d} \right)
$$

\n
$$
= \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \le d}} \left(\frac{X + \psi \left(\frac{X - \nu}{d} \right) - \psi \left(\frac{-\nu}{d} \right) \right)
$$

\n
$$
= X \frac{\rho(d)}{d} + \Psi_P(d, X) - \Phi_P(d)
$$

Remark. When $P(n)$ is an even function, the situation becomes simpler and a lot of important problems satisfy this requirement. Let $P(0) = a$, from $\psi(u) + \psi(-u) = 0, u \notin \mathbf{Z}$, we have

$$
\Phi_P(d) = \begin{cases} 0 & d \nmid a \\ \frac{1}{2} & d \mid a \end{cases}
$$
 (23)

especially, $\Phi_P(d) = 0$ for $d > a$.

We can generalize the Lemma 1 slightly.

Lemma 2.. Let $P(x)$ be a polynomial with integral coefficients and $m \in \mathbb{Z}^+$, $X \in \mathbb{R}^+$ and

$$
T_P(d,m,X) = \sum_{1 \le n \le X, (P(n),m) = 1} P_{(m) \le n} \le \sum_{n \le X, (P(n),m) = 1} P_{(m) \le n}
$$

Then we have

$$
\mathrm{T}_P(d,m,X)=
$$

$$
\begin{cases}\n0 & (d,m) > 1 \\
X \frac{\rho(d)}{d} \prod_{p \,|\, m} \left(1 - \frac{\rho(p)}{p}\right) + \Psi_p(d, m, X) - \Phi_p(d, m) & (d, m) = 1\n\end{cases}
$$

where

$$
\Psi_P(d, m, X) = \sum_{j+m} \mu(j) \Psi_P(dj, X)
$$

$$
\Phi_P(d, m) = \sum_{j+m} \mu(j) \Phi_P(dj)
$$

Proof . It is clear that $(d, m) > 1$ imply $T_p(d, m, X) = 0$. if $(d, m) = 1$, then

$$
T_P(d, m, X) = \sum_{\substack{P(n) \equiv 0 \pmod{d} \\ 1 \le n \le X}} \sum_{\substack{j + (P(n), m) \\ 1 \le n \le X}} \mu(j) \sum_{\substack{d, j + (P(n)) \\ 1 \le n \le X}} 1
$$

= $\sum_{j + m} \mu(j) (X \frac{\rho(dj)}{dj} + \Psi_P(dj, X) - \Phi_P(dj))$
= $X \frac{\rho(d)}{d} \sum_{j + m} \mu(j) \frac{\rho(j)}{j} + \sum_{j + m} \mu(j) \Psi_P(dj, X) - \sum_{j + m} \mu(j) \Phi_P(dj)$
= $X \frac{\rho(d)}{d} \prod_{p + m} (1 - \frac{\rho(p)}{p}) + \Psi_P(d, m, X) - \Phi_P(d, m)$

Suppose $P_1, P_2, ..., P_k \in \mathbb{Z}[x]$ and satisfy the three conditions (a) , (b) , (c) above. The product in (2) has been proved to be convergent and the coefficient $C(P_1, P_2, ..., P_k)$ is often called Bateman-Horn constant or Hardy-Littlewood Constant $[1],[7],[8],[16]$. From the condition (b) , it is easy to know that there is a positive integer m such that if $(P(n)$, $m) = 1$, then $P_i(n)$ are pairwise coprime.

 K. Conrad [8] obtained a very nice result , he proved unconditionally that the Bateman-Horn constant has another expression.

Lemma 3. (K. Conrad) Suppose $P_1, P_2, ..., P_k \in \mathbb{Z}[x]$ and satisfy the three conditions (a) , (b) , (c) . For any positive integer k and m, the series

$$
\sum_{\substack{d\geq 1\\(d,m)=1}}\frac{\mu(d)\rho(d)(\log d)^k}{d}\tag{24}
$$

converges and the equality

$$
\frac{(-1)^k}{k!} \prod_{p \,|\, m} \left(1 - \frac{\rho(p)}{p}\right) \sum_{\substack{d \geq 1 \\ (d,m) = 1}} \frac{\mu(d)\rho(d)(\log d)^k}{d} = C(P_1, P_2, \dots, P_k) \tag{25}
$$

holds, where $\rho(d)$ is the number of the solutions of the congruence $P(x)= P_1(x)P_2(x) ... P_k(x) \equiv 0 \pmod{d}.$

4. Generating Bateman-Horn Conjecture

Now, Let us consider the sum (4). Suppose $P_1, P_2, ..., P_k \in \mathbb{Z}[x]$ and satisfy the three conditions (a) , (b) , (c) above and P is the product of P_i 's and a positive integer m satisfies that if $(P(n)$, $m) = 1$, then $P_i(n)$ are pairwise coprime . From the condition (a) , $\exists H \in \mathbb{Z}^+$, for $n \geq H$ we have $P_i(n) > 1$ for all *i*. Hence, $(P(n), m) = 1$ and $n \geq H$ imply $\omega(P(n)) \geq k$. Then , for the set of integers

$$
E = \{ P(n) : H \le n \le X, (P(n), m) = 1 \}
$$

From (18) , Lemma 2 , Lemma 3 , we have

$$
k! \sum_{(P(n),m)=1}^{R \leq n \leq X} \Lambda(P_1(n)) \Lambda(P_2(n)) \dots \Lambda(P_k(n))
$$

\n
$$
= (-1)^k \sum_{(P(n),m)=1}^{R \leq n \leq X} \sum_{d+P(n)} \mu(d) (\log d)^k
$$

\n
$$
= (-1)^k \sum_{(P(n),m)=1}^{1 \leq n \leq X} \sum_{d+P(n)} \mu(d) (\log d)^k + O(1)
$$

\n
$$
= (-1)^k \sum_{1 < d \leq P(X)} \mu(d) (\log d)^k \cdot \sum_{1 \leq n \leq X, (P(n),m)=1}^{R \leq R \leq X} 1 + O(1)
$$

\n
$$
= (-1)^k \sum_{1 < d \leq P(X)} \mu(d) (\log d)^k \cdot (X \frac{\rho(d)}{d} \prod_{p \mid m} (1 - \frac{\rho(p)}{p}) + \Psi_p(d, m, X) - \Phi_p(d, m)) + O(1)
$$

\n
$$
= X \cdot (-1)^k \prod_{p \mid m} (1 - \frac{\rho(p)}{p}) \sum_{1 < d \leq P(X)} \frac{\mu(d) \rho(d) (\log d)^k}{d}
$$

\n
$$
+ (-1)^k \sum_{1 < d \leq P(X)} \mu(d) (\log d)^k \cdot \Psi_p(d, m, X)
$$

\n
$$
\sum_{(d,m)=1}^{(d,m)=1} \mu(d) (\log d)^k \cdot \Psi_p(d, m, X)
$$

$$
+(-1)^{k+1} \sum_{1 < d \le P(X)} \mu(d) (\log d)^k \cdot \Phi_P(d, m) + O(1)
$$
\n
$$
(d,m)=1
$$
\n
$$
= X \cdot k! C(P_1, P_2, \dots, P_k)
$$
\n
$$
+X \cdot (-1)^{k+1} \prod_{p \mid m} \left(1 - \frac{\rho(p)}{p}\right) \sum_{\substack{d > P(X) \\ (d,m) = 1}} \frac{\mu(d)\rho(d)(\log d)^k}{d}
$$
\n
$$
+(-1)^k \sum_{\substack{1 < d \le P(X) \\ (d,m) = 1}} \mu(d)(\log d)^k \cdot \Psi_P(d, m, X)
$$
\n
$$
(d,m)=1
$$
\n
$$
+(-1)^{k+1} \sum_{\substack{1 < d \le P(X) \\ (d,m) = 1}} \mu(d)(\log d)^k \cdot \Phi_P(d, m) + O(1)
$$

Hence , we obtain Bateman-Horn conjecture with error term.

Theorem 2 . The following explicit asymptotic formula

$$
\sum_{\substack{H \le n \le X \\ (P(n), m) = 1}} \Lambda(P_1(n)) \Lambda(P_2(n)) \dots \Lambda(P_k(n))
$$

= $X \cdot C(P_1, P_2, \dots, P_k) + R_P(m, X)$ (26)

holds , where the error term

$$
R_P(m, X) = R_{P,1}(m, X) + R_{P,2}(m, X) + R_{P,3}(m, X) + O(1)
$$
\n(27)

where

$$
R_{P,1}(m,X) = X \cdot \frac{(-1)^{k+1}}{k!} \prod_{p \mid m} \left(1 - \frac{\rho(p)}{p}\right) \sum_{\substack{d > P(X) \\ (d,m) = 1}} \frac{\mu(d)\rho(d)(\log d)^k}{d} \tag{28}
$$

$$
R_{P,2}(m,X) = \frac{(-1)^k}{k!} \sum_{\substack{1 < d \le P(X) \\ (d,m)=1}} \mu(d) (\log d)^k \cdot \Psi_P(d,m,X) \tag{29}
$$

$$
R_{P,3}(m,X) = \frac{(-1)^{k+1}}{k!} \sum_{\substack{1 < d \le P(X) \\ (d,m) = 1}} \mu(d) (\log d)^k \cdot \Phi_P(d,m) \tag{30}
$$

5. Some Remarks

First, we notice that the case $m > 1$ can be reduced to the case $m = 1$. without losing generality, we can assume m squarefree and Let $m = p_1 p_2 ... p_r$. From the condition (c) , $p(p_i)$ is less than p_i and there are $t_i = p_i - \rho(p_i)$ residues $(mod p_i)$ $0 < a_{i,1} < a_{i,2} < \cdots < a_{i,t_i} \le p_i$ which are not the solutions of (3). Let $u = \prod_{1 \le i \le r} t_i$. From the Chinese Remainder Theorem , the systems of the linear congruences

$$
\begin{cases}\n x \equiv a_{1,j_1}(mod\ p_1), \quad 1 \le j_1 \le t_1 \\
 \dots \\
 x \equiv a_{r,j_r}(mod\ p_r), \quad 1 \le j_r \le t_r\n\end{cases}
$$
\n(31)

have u solutions $x \equiv b_1, b_2, ..., b_u$ (mod m) and $n \equiv b_j \pmod{m}$ imply $(P(n), m) = 1$. Instead of $P(n)$, we can consider the product

 $T_i(n) = P(mn + b_i) = P_1(mn + b_i)P_2(mn + b_i) ... P_k(mn + b_i)$, $1 \leq j \leq u$ which satisfy $(T_i(n), m) = 1$ for all *n* and $P_i(mn + b_i)$, $1 \le i \le k$ are pairwise coprime for all n .

 Example. Let's consider the set of four primes of the form $n-5$, $n-1$, $n+1$, $n+5$, we have $m=30$. In order that the values of these four polynomials are pairwise coprime, if and only if n satisfies one of the following systems of linear congruences

$$
\begin{cases}\nn \equiv 0 & (mod 2) \\
n \equiv 0 & (mod 3) \\
n \equiv \pm 2 & (mod 5)\n\end{cases}
$$

Their solutions are $n \equiv \pm 12 \ (\text{mod } 30)$. Hence, the problem reduced to the following two possible sets

for which $m = 1$.

Let's consider , for example , the set on the right side. We have

$$
\begin{cases}\n\rho(p) = 0 & p = 2,3,5 \\
\rho(p) = 4 & p > 5\n\end{cases}
$$

and

$$
C(P_1, P_2, P_3, P_4) = \frac{15^4}{4^4} C_4
$$

where

$$
C_4 = \prod_{p>5} \left(1 - \frac{6p^2 - 4p + 1}{(p-1)^4} \right) \approx 0.62974
$$

In this case, the numerical computation shows that the left side of (26) is quite close to the main term .

Secondly, let's consider the error term .

Since m is determined by the polynomial P, so $R_P(m, X)$ is only dependent on P and X in fact.

The term (1) in (27) is a constant, which is only dependent on the polynomial P and can be easily determined in a single case.

From the convergency of series (24), we have $R_{P,1}(m, X) = o(X)$, when X tends to infinity.

When $P(n)$ is an even function, It's easy to estimate $R_{P,3}(m, X)$. If $d > a = P(0)$, then $\Phi_P(d,m) = 0$, we have

$$
R_{P,3}(m, X) = O(\sum_{1 < d \le a} (\log d)^k) = O(1)
$$

Therefore, in this case, the estimation of $R_P(m, X)$ reduced to the estimation of $R_{P,2}(m, X)$.

6. Examples for $k = 1$

 Bateman-Horn conjecture is a quite general conjecture , it has a lot of special cases. First, we consider the case $k = 1$. In this case, $m = 1$ and

$$
C(P) = \prod_{p} \frac{p - \rho(p)}{p - 1} \tag{32}
$$

For the simplest case $P(n) = n$, we have $\rho(p) = 1$, $C(P) = 1$ and

$$
\sum_{1 \le n \le X} \Lambda(n) = X + R_P(X) \tag{33}
$$

where

$$
R_P(X) = \sum_{1 \le d \le X} \mu(d) \log d \cdot \left\{ \frac{X}{d} \right\} + X \cdot \sum_{d > X} \frac{\mu(d) \log d}{d} \tag{34}
$$

(33) is another explicit formula for Chebyshev's $\psi(x)$ without resorting the zeros of Riemann zeta function [24]. $R_p(X) = o(X)$ implys Prime Number Theorem and $R_P(X) = O\left(X^{\frac{1}{2}}(\log X)^2\right)$ would imply Riemann Hypothesis [20].

For $P(n) = an + b$, $0 < b < a$, $(a, b) = 1$, we have $\rho(p) = 1$, if $p \nmid a$, and $\rho(p) = 0$, if $p \mid a$, therefore

$$
C(P) = \prod_{p \; | \; a} \frac{p}{p-1} = \frac{a}{\varphi(a)} \tag{35}
$$

where $\varphi(n)$ is the Euler's totient function and (26) becomes

$$
\sum_{1 \le n \le X} \Lambda(an + b) = \frac{1}{\varphi(a)}(aX + b) + R_P(X) \tag{36}
$$

where
$$
R_P(X) = X \cdot \sum_{\substack{d>a \neq b}} \sum_{\substack{d \neq d \leq a \\ (d,a) = 1}} \frac{\mu(d) \log d}{d} - \sum_{\substack{1 < d \leq a \\ (d,a) = 1}} \sum_{\substack{d \neq d \leq a \\ (d,a) = 1}} \mu(d) \log d \cdot \psi\left(\frac{X - \nu}{d}\right) + \sum_{\substack{d \neq d \leq a \\ (d,a) = 1}} \mu(d) \log d \cdot \psi\left(\frac{-\nu}{d}\right) - \frac{b}{\varphi(a)} \tag{37}
$$

where v is the solution of the congruence $at + b \equiv 0 (mod d)$, $0 < v \leq d$.

 (36) provides an explicit formula for a sum over the powers of primes in an arithmetic progressions without resorting the zeros of Dirichlet L- function,[24].

For $P(n) = n^2 + a$, $a \neq -b^2$, $P(n)$ is irreducible in $\mathbf{Q}[x]$ and is an even function . We have $\rho(2) = 1$ and $\rho(p) = 1 + \left(\frac{-a}{p}\right)$, $p > 2$. Hence

$$
\sum_{n^2 + a \ge 1} \sum_{n^2 + a \ge 1} A(n^2 + a)
$$

= $X \cdot \prod_{p > 2} (1 - \left(\frac{-a}{p}\right) \frac{1}{p-1}) + R_{p,1}(X) + R_{p,2}(X) + O(1)$ (38)

where

$$
R_{P,2}(X) = -\sum_{1 < d \le X^2 + a} \mu(d) \log d \cdot \Psi_P(d, X) \tag{39}
$$

 As we mentioned above , C. Hooley had investigated the sum $\sum_{n\leq X}\tau(n^2+a)$ related to $P(n)=n^2+a$ and proved

$$
\sum_{1 \le d \le X} \Psi_P(d, X) = O\left(X^{\frac{8}{9}} (\log X)^3\right) \tag{40}
$$

from (40), we can see some hope for proving $R_{P,2}(X) = o(X)$.

For the primes of the form $n^4 + 1$, [3], and generalized Fermat primes of the form $F_{n,t} = n^{2^t} + 1$, [4], we can get similar results.

7. Examples for $k = 2$

If both $n-1$ and $n+1$ are primes, then we call them twin primes. Generally , we can consider the generalized twin primes , the pair of primes $n - a$ and $n + a$ $(a \ge 1)$. In this case, $P(n) = (n - a)(n + a) = n^2 - a^2$ is an even function and $m = 2a$, $H = a + 2$ and $\rho(p) = 1$, $p \perp 2a$; $\rho(p) = 2$, $p \nmid 2a$. Hence

$$
C(P_1, P_2) = \prod_{p \mid 2a} (1 - \frac{1}{p})^{-1} \prod_{p \nmid 2a} (1 - \frac{2}{p}) (1 - \frac{1}{p})^{-2}
$$

=
$$
2 \prod_{p > 2} \left(1 - \frac{1}{(p-1)^2} \right) \prod_{\substack{p \mid a \\ p > 2}} \frac{p-1}{p-2}
$$
 (41)

and (26) becomes

$$
\sum_{\substack{a+2\leq n\leq X\\(n+a,2a)=1}} \Lambda(n-a)\Lambda(n+a)
$$

= $X \cdot C(P_1, P_2) + R_{P,1}(2a, X) + R_{P,2}(2a, X) + O(1)$ (42)

where

$$
R_{P,1}(2a,X) = -\frac{1}{2}X\prod_{p\ |2a} \left(1 - \frac{1}{p}\right) \sum_{\substack{d>X^2 - a^2 \\ (d,2a) = 1}} \frac{\mu(d)2^{\omega(d)}(\log d)^2}{d}
$$

$$
R_{P,2}(2a,X) = \frac{1}{2} \sum_{\substack{1 < d \le X^2 - a^2 \\ (d,2a) = 1}} \mu(d)(\log d)^2 \cdot \Psi_P(d,2a,X)
$$

8. Application to Goldbach Conjecture

 Famous Goldbach conjecture on even integers is quite similar to the generalized twin primes problem , but there are some differences also. Let $N = 2X, X \ge 4$ be an even integer, Goldbach guessed N always can be expressed as the sum of two primes, $N = p + q$. If we write $p = X - n$, $1 \le n \le X - 2$, then $q = X + n$ (We ignore the unique case $p = q$). Therefore, in this case we should consider the polynomial $P(n) =$ $(X - n)(X + n) = X^2 - n^2$. $P(n)$ has the negative leading coefficient, it does not satisfy the condition (a) and $P(0) = X^2$ is unbounded. But, since it has positive values for $1 \le n \le X - 2$, we can also apply (18) and lemma 2 to the integer set

$$
E = \{P(n) = X^2 - n^2 : 1 \le n \le X - 2, (X + n, 2X) = 1\}
$$

In this case, we also have $\rho(p) = 1$, $p \perp 2X$; $\rho(p) = 2$, $p \nmid 2X$.
Therefore, we have

$$
\sum_{\substack{1 \le n \le X-2 \\ (X+n,2X)=1}} \Lambda(X-n) \cdot \Lambda(X+n)
$$
\n
$$
= \frac{1}{2!} \sum_{\substack{1 \le n \le X-2 \\ (X+n,2X)=1}} \sum_{\substack{1 \le n \le X-2 \\ (X+n,2X)=1}} \Lambda(X-n) \cdot \Lambda(X+n)
$$
\n
$$
= \frac{1}{2!} \sum_{\substack{1 \le n \le X-2 \\ (d,2X)=1}} \Lambda(X-n) \cdot \Lambda(X+n)
$$
\n
$$
= \frac{1}{2} \sum_{\substack{1 < d \le X^2-1 \\ (d,2X)=1}} \mu(d) (\log d)^2 \cdot \left(\frac{1}{2} - \frac{\rho(d)}{d} \prod_{p \mid 2X} \left(1 - \frac{\rho(p)}{p} \right) \right)
$$
\n
$$
= \frac{1}{2} \sum_{\substack{1 < d \le X^2-1 \\ (d,2X)=1}} \mu(d) (\log d)^2 \cdot \left(\frac{X-2}{2} \right)^{\frac{\rho(d)}{d}} \prod_{p \mid 2X} \left(1 - \frac{\rho(p)}{p} \right)
$$

$$
+\Psi_P(d,2X,X-2)-\Phi_P(d,2X))
$$

$$
= X \cdot \frac{1}{2} \prod_{p \mid 2X} \left(1 - \frac{1}{p} \right) \sum_{\substack{1 < d \\ (d, 2X) = 1}} \frac{\mu(d) \rho(d) (\log d)^2}{d} + R_p(2X, X - 2) + O(1)
$$

$$
= X \cdot C(P_1, P_2) + R_{P,1}(2X, X - 2)
$$

+ $R_{P,2}(2X, X - 2) + R_{P,3}(2X, X - 2) + O(1)$ (43)

where

$$
R_{P,1}(2X, X-2) = -\frac{X-2}{2} \prod_{p \;|\; 2X} \left(1 - \frac{1}{p}\right) \sum_{\substack{d > X^2 - 1 \\ (d, 2X) = 1}} \frac{\mu(d)\rho(d)(\log d)^2}{d} \tag{44}
$$

$$
R_{P,2}(2X, X-2) = \frac{1}{2} \sum_{\substack{1 < d \le X^2 - 1 \\ (d, 2X) = 1}} \mu(d) (\log d)^2 \cdot \Psi_P(d, 2X, X-2) \tag{45}
$$

$$
R_{P,3}(2X, X-2) = -\frac{1}{2} \sum_{\substack{1 < d \leq X^2 - 1 \\ (d, 2X) = 1}} \mu(d) (\log d)^2 \cdot \Phi_P(d, 2X) \tag{46}
$$

and $C(P_1, P_2)$ is the same as (41) shows, we need only to replace α in (41) by X .

Since $\Phi_P(d, 2X) = \sum_{j+2X} \mu(j) \Phi_P(dj)$ and $P(0) = X^2$, but $dj + X^2$, from (23) we have

$$
R_{P,3}(2X, X - 2) = 0 \tag{47}
$$

So, the problem reduced to the estimation of $R_{P,2}(2X, X - 2)$ again.

 It has been proved that the asymptotic formula (43) valid for almost all $N = 2X$. ([19], p. 444).

8. Conclusion

 Up to now , though the numerical computations support Bateman-Horn conjecture strongly in many cases , it is still unproved except the simplest cases $P(n) = n$ and $P(n) = an + b$, $(a, b) = 1$. Goldbach conjecture has been checked up to very large even number, but it is unproved also . Now, from (26) , the problem reduced to the estimation of the error term $R_p(m, X)$. Specially, when $P(n)$ is an even function, the problem reduced to the estimation of $R_{P,2}(m, X)$ further.

As H. Iwaniec noticed that Möbius function $\mu(n)$ has ' Möbius randomness law ' ([18], $p. 338$). In (29), the factor $\Psi_p(d, m, X)$ is a sum of the values of $\psi(n)$ which has the period 1 and the values in the interval $\left(-\frac{1}{2},\frac{1}{2}\right]$, so we can naturally expect that there is $\lq\Psi_p(d,m,X)$ randomness law ' also and there may be a good cancellation in the sum of (29) . Even more, we can expect $R_P(m, X) = o(X)$. If this is the case, then Bateman-Horn conjecture would be proved .

 Another possible approach is considering the possible oscillation property of the error term . The result of computation shows the error term may be oscillating and changing signs infinitely often when X tends to infinity . As the difference of a step function and a linear function, the error term is oscillating naturally . If this is the case, then the sum $S(P_1, P_2, ..., P_k; X)$ would tends to infinity with X, since it is a nondecreasing function of X .

 Acknowledgement . I wouldlike to thank the library of Math. Dept.

of Sichuan Univ. and the library of the Chinese Academy of Science for providing references. I would like to thank all authors who published their papers on net , so that I can get a lot of useful information from net.

 I would like to thank Prof. A.Granville for his understanding and helps and also to thank Prof. A.Lei for his warm helps.

 I would like to thank my family also, a special thanks to my daughter , her consistent support and encouragement help to bring about this paper.

References

- [1] P.T.Bateman, R.A.Horn A Heuristic Asymptotic Formula Concerning the Distribution of Prime Numbers, Math. Comp. **16** (1962), 363-367.
- [2] D. Shanks On the Conjecture of Hardy & Littlewood Concerning the Number of Primes of the Form $n^2 + a$, Math. Comp. **14** (1960), 321- 332.
- [3] D. Shanks On Numbers of the Form $n^4 + 1$, Math. Comp. **15** (1961), 186-189.
- [4] Y. Gallot A Problem on the Conjecture Concerning the Distribution of Generalized Fermat Prime Numbers , 2003.
- [5] G.H. Hardy , J.E. Littlewood Some Problems of 'Partitio Numerorum' ; III: On the Expression of a Number as a Sum of Primes, Acta Math., **44 (**1923), 1-70.
- [6] S. Baier On the Bateman-Horn Conjecture, J. Number Theory, **96** (2002) 432-448.
- [7] T. Foo Chebotarёv Density and the Bateman-Horn Constant, arXiv:1109.3040v4[Math.NT] 4 Oct 2011 .
- [8] K. Conrad Hardy-Littlewood Constants , in Mathematical Properties of Sequences and Other Combinatorial Structures, Kluwer, 2003, 133-154.
- [9] P. Erdös On the Sum $\sum d(f(n))$, J. London Math. Soc. **27** (1952), 7-15.
- [10] C. Hooley An Asymptotic Formula in the Theory of Numbers,

Proc. London Math. Soc. Ser.3, **7** (1957), 396-413.

- [11] C. Hooley On the Representation of a Number as the Sum of a Square and a Product, Math. Z., **69** (1958), 211-227.
- [12] C. Hooley On the Number of Divisors of Quadratic Polynomials, Acta Math. Vol. 110, No.1,(1963), 97-114.
- [13] H. G. Diamond Elementary Methods in the Study of the Distribution of Prime Numbers, Bull. Amer. Math. Soc. Vol. 7, No. 3, (1982),553-589.
- [14] H.G. Diamond , P. Erdös On Sharp Elementary Prime Number Estimates, L'Enseignement Math. **26** (1980), 313-321.
- [15] T.M. Apostol Introduction to Analytic Number Theory, Springer-Verlag, New York , 1976 .
- [16] P.T. Bateman, H.G. Diamond Analytic Number Theory, An Introductory Course , World Scientific , New Jersey , 2004 .
- [17] G.Greaves Sieves in Number Theory, Springer-Verlag, New York, 2001.
- [18] L.G. Hua 数论导引, 科学出版社, 1979.
- [19] H. Iwaniec, E. Kowalski Analytic Number Theory, AMS , Providence, Rhode Island, 2004 .
- [20] A. Ivić The Riemann Zeta-Function, Theory and Applications, Dover Publications, New York, 1985.
- [21] W.Narkiewicz, The Development of Prime Number Theory , Springer-Verlag, Berlin , 2000.
- [22] K. Ireland, M. Rosen A Classical Introduction to Modern Number Theory, Springer-Verlag, New York , 1990.
- [23] M.B. Nathanson Additive Number Theory, The Classical Bases , Springer-Verlag, New York , 1996 .
- [24] H. Davenport, Multiplicative Number Theory, Revised by H. Montgomery, Springer-Verlag, New York, 1980.
- [25] C.D. Pan, C.B. Pan 解析数论基础 , 科学出版社, 1999.
- [26] Y.Wang Goldbach Conjecture, World Scientific, Singapore, 1984.
- [27] Y.Wang 王元论哥德巴赫猜想, 山东教育出版 社, 1999.

18

 $\label{eq:optimal} \nabla_{\theta} \mathcal{P} = \mathcal{P}(\theta) \quad \text{for all } \theta \in \mathcal{P}(\mathcal{P}) \text{ and } \theta \in \mathcal{P}(\mathcal{P})$