POLYNOMIAL SIEVE AND ITS APPLICATION TO Bateman-Horn CONJECTURE AND Goldbach CONJECTURE

ZHANG MINGZHI

Mathematics Department, Sichuan University, Chengdu, Sichuan Province, 610064, P.R. of China. email: mingzhi_zhang1942@yahoo.com

ABSTRACT

For a set E of integers, for which $\omega(n) \ge k$, $\forall n \in E, k \in Z^+$, where $\omega(n)$ is the number of the different prime factors of n. We give a sieve, which can separate the ones for which $\omega(n) = k$ from others.

Applying this sieve to Bateman-Horn conjecture and Goldbach conjecture , we obtain an explicit asymptotic formula with both the main term and the error term . This provides a possible starting point for dealing with some famous problems, Like twin primes, primes of the form $n^2 + a$, Goldbach conjecture and so on .

Key words and phrases : sieve; Bateman-Horn conjecture; Goldbach conjecture ; explicit asymptotic formula; main term; error term; twin primes; primes of the form $n^2 + a$. 2010 Mathematics Subject Classification : 11N32, 11N35, 11P32

1. Introduction

There are a lot of famous problems in number theory which puzzled people in centuries. For example, the infiniteness of the primes of the form $n^2 + 1$, the infiniteness of the twin primes, the infiniteness of the integers n for which n, n + 2, n + 6 are all primes and so on .

G.H.Hardy and J.E.Littlewood [5], [21] had given a series of heuristic asymptotic formulas for the additive problems on primes using circle method.

In 1962, P.T.Bateman and R.A.Horn [1] had given a famous heuristic asymptotic formula concerning the distribution of primes. A lot of problems are special cases of it. Their conjecture is as follows.

Suppose $P_1, P_2, ..., P_k \in \mathbb{Z}[x]$ and they satisfy the following three conditions

(a) The leading coefficient of every P_i is positive.

- (b) Every P_i is irreducible in Q[x] and no two of them differ by a constant factor.
- (c) There is no prime p such that p divides the product $P(n) = P_1(n)P_2(n) \dots P_k(n)$ for all $n \in \mathbb{Z}^+$.

Let h_i be the degree of $P_i(n)$ and $Q(P_1, P_2, ..., P_k; X)$ denote the number of positive integers $n \ (1 \le n \le X)$ such that $P_1(n)$, $P_2(n)$, ..., $P_k(n)$ are all primes. Bateman and Horn obtained the following heuristic asymptotic formula by a probabilistic consideration

 $Q(P_1, P_2, ..., P_k; X) \sim h_1^{-1} h_2^{-1} ... h_k^{-1} C(P_1, P_2, ..., P_k) \int_2^X (\log u)^{-k} du$ (1) where

$$C(P_1, P_2, \dots, P_k) = \prod_p \left\{ (1 - \frac{\rho(p)}{p}) (1 - \frac{1}{p})^{-k} \right\}$$
(2)

(3)

where $\rho(p)$ denote the number of the solutions of the congruence $P(x) \equiv 0 \pmod{p}$

and p ranges over all primes.

An upper bound for $Q(P_1, P_2, ..., P_k; X)$ had been found [16],[17]

$$Q(P_1, P_2, ..., P_k; X) \le 2^k k! C(P_1, P_2, ..., P_k) \{1 + o(1)\} X / (\log X)^k$$

but, as I known, no nontrivial lower bound has been found.

By similar consideration, we can deal with the following sum

$$S(P_1, P_2, \dots, P_k; X) = \sum_{1 \le n \le X} \Lambda(P_1(n)) \Lambda(P_2(n)) \cdots \Lambda(P_k(n))$$
(4)

where $\Lambda(n)$ is the von Mangoldt function and obtain a similar heuristic asymptotic formula

$$S(P_1, P_2, ..., P_k; X) \sim C(P_1, P_2, ..., P_k) \cdot X$$
 (5)

S.Baier [6] proved that (1) and (5) are equivalent.

In this paper, we give a sieve, which can generate an explicit asymptotic formula with both the main term and the error term of $S(P_1, P_2, ..., P_k; X)$. This provides a possible starting point for dealing with some famous problems, Like twin primes, primes of the form $n^2 + 1$ and so on .

2. An Identity of Arithmetic Function and the Polynomial Sieve

As the analytic form of the Fundamental Theorem of Arithmetic, the Chebyshev's Identity plays an irreplaceable role.

$$\Lambda * 1 = L \tag{6}$$

By differentiation of (6), we obtain Selberg's identity

$$L\Lambda + \Lambda * \Lambda = L^2 * \mu \tag{7}$$

where μ is the Möbius function.

Starting from (6) and (7), we can prove the Prime Number Theorem by analytic or elementary methods [13],[14],[15]. Here, we choose a slightly different way.

We denote by e_1 the unit of arithmetic functions and by 1 the function for which 1(n) = 1 for all $n \in \mathbb{Z}^+$. We have

$$\mu * 1 = e_1 \tag{8}$$

By differentiation of (8) and $Le_1 = 0$ we obtain the well-known identity

$$\Lambda = -L\mu * 1 \tag{A}_1$$

or

$$\mu * \Lambda = -L\mu \tag{9}$$

By differentiation of (9) , we obtain

$$\mu * (\Lambda * \Lambda - L\Lambda) = L^2 \mu \tag{10}$$

or

$$\Lambda^{*2} = \Lambda * \Lambda = L^2 \mu * 1 + L\Lambda \tag{A2}$$

By differentiation of (10) further, from (9) and (10) we obtain

$$\mu * (\Lambda^{*3} - 3\Lambda * L\Lambda + L^2\Lambda) = -L^3\mu \tag{11}$$

or

$$\Lambda^{*3} = \Lambda * \Lambda * \Lambda = -L^3 \mu * 1 + 3\Lambda * L\Lambda - L^2 \Lambda$$
 (A₃)

Generally, by k-1 times differentiation of (9), we obtain

$$\sum_{0 \le i \le k-1} \binom{k-1}{i} L^{k-1-i} \mu * L^{i} \Lambda = -L^{k} \mu$$
(12)

(12) is a recursive formula for $L^{i}\mu$, From (9), (10), (11) and (12) we can obtain the following identity by induction

Theorem 1. For every positive integer k, the following arithmetic function identity holds

$$\Lambda^{*k} = (-1)^k L^k \mu * 1 + B_k \tag{A_k}$$

where

$$B_{k} = \sum_{\substack{i_{1}+i_{2}+\dots+i_{t}+j_{1}+j_{2}+\dots+j_{t}=k \\ j_{1}+j_{2}+\dots+j_{t}< k, j_{r}\geq 1 \ (1\leq r\leq t)}} a(k, i_{1}, i_{2}, \dots, i_{t}, j_{1}, j_{2}, \dots, j_{t}) \cdot L^{i_{1}}\Lambda^{*j_{1}} * L^{i_{2}}\Lambda^{*j_{2}} * \dots * L^{i_{t}}\Lambda^{*j_{t}}$$

$$\dots * L^{i_{t}}\Lambda^{*j_{t}}$$

$$(13)$$

where $a(k, i_1, i_2, \dots, i_t, j_1, j_2, \dots, j_t)$ are integers.

Remark. In every term of B_k , the sum of the exponents of Λ is less than k. We denote by $\omega(n)$ the number of the different prime factors of n. If $\omega(n) \ge k$, then $B_k(n) = 0$ by the pigeon hole principle. From (A_k) , we have

$$\Lambda^{*k}(n) = (-1)^k \sum_{d \mid n} \mu(d) (\log d)^k$$
(14)

If $\omega(n) = k$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, p_i are different primes, from (14) , we

obtain

$$k! \cdot \log p_1 \cdot \log p_2 \cdot \dots \cdot \log p_k = \sum_{1 \le i \le k} (-1)^{k+i} \sum_{1 \le j_1 < j_2 < \dots < j_i \le k} (\log p_{j_1} + \dots + \log p_{j_i})^k$$
(15)

which is equivalent to the following identity of polynomials in k variables

$$k! x_1 x_2 \dots x_k = \sum_{1 \le i \le k} (-1)^{k+i} \sum_{1 \le j_1 < j_2 < \dots < j_i \le k} (x_{j_1} + \dots + x_{j_i})^k$$
(16)

If $\omega(n) = t > k$, then both sides of (14) vanish ([15], p. 47). In this case, the equivalent polynomial identity is

$$0 = \sum_{1 \le i \le t} (-1)^i \sum_{1 \le j_1 < j_2 < \dots < j_i \le t} (x_{j_1} + \dots + x_{j_i})^k$$
(17)

Therefore, for any set E of integers, for which $\omega(n) \ge k$, $\forall n \in E$, acting (A_k) on the integers of E, we can separate the ones for which $\omega(n) = k$ from others. If we consider the sum over E, from (14) we get

$$\sum_{n \in E, \omega(n) = k} \Lambda^{*k}(n) = (-1)^k \sum_{n \in E} \sum_{d \mid n} \mu(d) (\log d)^k$$
(18)

So, (18) provides some kind of sieve. We call it polynomial sieve from the discussion above.

Golomb [8] had obtained a result similar to (14).

3. Some lemmas

C. Hooley [12] had given a formula for quadratic polynomials in his study on the sum $\sum_{n \le X} \tau(n^2 + a)$, where $\tau(n)$ is the number of divisors of n. We generalize his result slightly and the proof is almost unchanged.

Lemma 1. (C. Hooley) Let P(n) be a polynomial with integral coefficients, $d \in \mathbb{Z}^+$, $X \in \mathbb{R}^+$ and

$$T_P(d, X) = \sum_{\substack{P(n) \equiv 0 \pmod{d} \\ 1 \leq n \leq X}} 1 \tag{19}$$

Then we have

$$T_{P}(d,X) = X \frac{\rho(d)}{d} + \Psi_{P}(d,X) - \Phi_{P}(d)$$
(20)

where $\rho(d)$ is the number of the solutions of the congruence $P(x) \equiv 0 \pmod{d}$ and

$$\Psi_P(d,X) = \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \le d}} \psi(\frac{X-\nu}{d})$$
(21)

$$\Phi_P(d) = \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \le d}} \psi(\frac{-\nu}{d})$$
(22)

where $\psi(u) = \frac{1}{2} - \{u\}$, $\{u\}$ is the fraction part of u.

Proof.
$$T_{P}(d, X) = \sum_{P(\nu) \equiv 0 \pmod{d}} \sum_{\substack{n \equiv \nu \pmod{d} \\ 1 \leq n \leq X}} (mod \ d) 1$$
$$= \sum_{P(\nu) \equiv 0 \pmod{d}} (mod \ d) \left(\left[\frac{X - \nu}{d} \right] + 1 \right)$$
$$= \sum_{P(\nu) \equiv 0 \pmod{d}} (mod \ d) \left(\left[\frac{X - \nu}{d} \right] - \left[\frac{-\nu}{d} \right] \right)$$
$$= \sum_{\substack{P(\nu) \equiv 0 \pmod{d} \\ 0 < \nu \leq d}} (mod \ d) \left(\frac{X}{d} + \psi \left(\frac{X - \nu}{d} \right) - \psi \left(\frac{-\nu}{d} \right) \right)$$
$$= X \frac{\rho(d)}{d} + \Psi_{P}(d, X) - \Phi_{P}(d) \square$$

Remark. When P(n) is an even function, the situation becomes simpler and a lot of important problems satisfy this requirement. Let P(0) = a, from $\psi(u) + \psi(-u) = 0, u \notin \mathbb{Z}$, we have

$$\Phi_P(d) = \begin{cases} 0 & d \nmid a \\ \frac{1}{2} & d \mid a \end{cases}$$
(23)

especially , $\Phi_P(d) = 0$ for d > a .

We can generalize the Lemma 1 slightly.

Lemma 2. . Let P(x) be a polynomial with integral coefficients and $m\in {f Z}^+$, $X\!\in \!{f R}^+$ and

$$T_P(d, m, X) = \sum_{\substack{P(n) \equiv 0 \pmod{d} \\ 1 \le n \le X, (P(n), m) = 1}} 1$$

Then we have

$$\Gamma_P(d,m,X) =$$

$$\begin{cases} 0 & (d,m) > 1 \\ X \frac{\rho(d)}{d} \prod_{p + m} \left(1 - \frac{\rho(p)}{p} \right) + \Psi_P(d,m,X) - \Phi_P(d,m) & (d,m) = 1 \end{cases}$$

where

$$\Psi_P(d, m, X) = \sum_{j+m} \mu(j) \Psi_P(dj, X)$$

$$\Phi_P(d, m) = \sum_{j+m} \mu(j) \Phi_P(dj)$$

Proof. It is clear that (d,m) > 1 imply $T_P(d,m,X) = 0$. if (d,m) = 1, then

$$T_{P}(d, m, X) = \sum_{\substack{P(n) \equiv 0 \pmod{d}}} \sum_{\substack{j + (P(n), m) \\ 1 \leq n \leq X}} \mu(j)$$

$$= \sum_{\substack{j + m \\ 1 \leq n \leq X}} \mu(j) \sum_{\substack{dj + (P(n) \\ 1 \leq n \leq X}} 1$$

$$= \sum_{\substack{j + m \\ d}} \mu(j) (X \frac{\rho(dj)}{dj} + \Psi_{P}(dj, X) - \Phi_{P}(dj))$$

$$= X \frac{\rho(d)}{d} \sum_{\substack{j + m \\ j \neq m}} \mu(j) \frac{\rho(j)}{j} + \sum_{\substack{j + m \\ j \neq m}} \mu(j) \Psi_{P}(dj, X) - \sum_{\substack{j + m \\ j \neq m}} \mu(j) \Phi_{P}(dj)$$

$$= X \frac{\rho(d)}{d} \prod_{p + m} (1 - \frac{\rho(p)}{p}) + \Psi_{P}(d, m, X) - \Phi_{P}(d, m)$$

Suppose $P_1, P_2, ..., P_k \in \mathbb{Z}[x]$ and satisfy the three conditions (a), (b), (c) above. The product in (2) has been proved to be convergent and the coefficient $C(P_1, P_2, ..., P_k)$ is often called Bateman-Horn constant or Hardy-Littlewood Constant [1],[7],[8],[16]. From the condition (b), it is easy to know that there is a positive integer m such that if (P(n), m) = 1, then $P_i(n)$ are pairwise coprime.

K. Conrad [8] obtained a very nice result, he proved unconditionally that the Bateman-Horn constant has another expression.

Lemma 3. (K. Conrad) Suppose $P_1, P_2, ..., P_k \in \mathbb{Z}[x]$ and satisfy the three conditions (a), (b), (c). For any positive integer k and m, the series

$$\sum_{\substack{d\geq 1\\(d,m)=1}} \frac{\mu(d)\rho(d)(\log d)^k}{d}$$
(24)

converges and the equality

$$\frac{(-1)^k}{k!} \prod_{p \mid m} \left(1 - \frac{\rho(p)}{p} \right) \sum_{\substack{d \ge 1 \\ (d,m) = 1}} \frac{\mu(d)\rho(d)(\log d)^k}{d} = C(P_1, P_2, \dots, P_k)$$
(25)

holds, where $\rho(d)$ is the number of the solutions of the congruence $P(x) = P_1(x)P_2(x) \dots P_k(x) \equiv 0 \pmod{d}.$

4. Generating Bateman-Horn Conjecture

Now, Let us consider the sum (4). Suppose $P_1, P_2, \ldots, P_k \in \mathbb{Z}[x]$ and satisfy the three conditions (a), (b), (c) above and P is the product of P_i 's and a positive integer m satisfies that if (P(n), m) = 1, then $P_i(n)$ are pairwise coprime. From the condition (a), $\exists H \in \mathbb{Z}^+$, for $n \ge H$ we have $P_i(n) > 1$ for all i. Hence, (P(n), m) = 1 and $n \ge H$ imply $\omega(P(n)) \ge k$. Then, for the set of integers

$$E = \{P(n): H \le n \le X, \ (P(n), m) = 1\}$$

From (18), Lemma 2, Lemma 3, we have

$$k! \sum_{\substack{H \le n \le X \\ (P(n),m)=1}} \Lambda(P_1(n)) \Lambda(P_2(n)) \dots \Lambda(P_k(n))$$

$$= (-1)^k \sum_{\substack{H \le n \le X \\ (P(n),m)=1}} \sum_{\substack{d + P(n) \\ d + P(n)}} \mu(d) (\log d)^k + O(1)$$

$$= (-1)^k \sum_{\substack{1 \le n \le X \\ (P(n),m)=1}} \sum_{\substack{d + P(n) \\ d + P(n) \\ (d,m)=1}} \mu(d) (\log d)^k \cdot \sum_{\substack{d + P(n) \\ 1 \le n \le X, (P(n),m)=1}} 1 + O(1)$$

$$= (-1)^k \sum_{\substack{1 < d \le P(X) \\ (d,m)=1}} \mu(d) (\log d)^k \cdot (X \frac{\rho(d)}{d} \prod_{p + m} \left(1 - \frac{\rho(p)}{p}\right) + \Psi_P(d,m,X) - \Phi_P(d,m)) + O(1)$$

$$= X \cdot (-1)^k \prod_{p + m} \left(1 - \frac{\rho(p)}{p}\right) \sum_{\substack{1 < d \le P(X) \\ (d,m)=1}} \frac{\mu(d)\rho(d)(\log d)^k}{d} + (-1)^k \sum_{\substack{1 < d \le P(X) \\ (d,m)=1}} \mu(d) (\log d)^k \cdot \Psi_P(d,m,X)$$

$$+ (-1)^{k+1} \sum_{\substack{1 < d \le P(X) \\ (d,m)=1}} \mu(d) (\log d)^k \cdot \Phi_P(d,m) + O(1) \\ (d,m)=1$$

$$= X \cdot k! C(P_1, P_2, \dots, P_k) + X \cdot (-1)^{k+1} \prod_{\substack{p \mid m}} \left(1 - \frac{\rho(p)}{p}\right) \sum_{\substack{d > P(X) \\ (d,m)=1}} \frac{\mu(d)\rho(d)(\log d)^k}{d} + (-1)^k \sum_{\substack{1 < d \le P(X) \\ (d,m)=1}} \mu(d) (\log d)^k \cdot \Psi_P(d,m,X) \\ (d,m)=1 + (-1)^{k+1} \sum_{\substack{1 < d \le P(X) \\ (d,m)=1}} \mu(d) (\log d)^k \cdot \Phi_P(d,m) + O(1) \\ (d,m)=1 \end{pmatrix}$$

Hence, we obtain Bateman-Horn conjecture with error term.

Theorem 2. The following explicit asymptotic formula

$$\sum_{\substack{H \le n \le X \\ (P(n),m)=1}} \Lambda(P_1(n))\Lambda(P_2(n)) \dots \Lambda(P_k(n))$$

= $X \cdot C(P_1, P_2, \dots, P_k) + R_P(m, X)$ (26)

holds, where the error term

$$R_P(m,X) = R_{P,1}(m,X) + R_{P,2}(m,X) + R_{P,3}(m,X) + O(1)$$
(27)

where

$$R_{P,1}(m,X) = X \cdot \frac{(-1)^{k+1}}{k!} \prod_{p \mid m} \left(1 - \frac{\rho(p)}{p}\right) \sum_{\substack{d > P(X) \\ (d,m) = 1}} \frac{\mu(d)\rho(d)(\log d)^k}{d}$$
(28)

$$R_{P,2}(m,X) = \frac{(-1)^k}{k!} \sum_{\substack{1 < d \le P(X) \\ (d,m)=1}} \mu(d) (\log d)^k \cdot \Psi_P(d,m,X)$$
(29)

$$R_{P,3}(m,X) = \frac{(-1)^{k+1}}{k!} \sum_{\substack{1 < d \le P(X) \\ (d,m) = 1}} \mu(d) (\log d)^k \cdot \Phi_P(d,m)$$
(30)

5. Some Remarks

First, we notice that the case m > 1 can be reduced to the case m = 1. without losing generality, we can assume m squarefree and Let $m = p_1 p_2 \dots p_r$. From the condition (c), $\rho(p_i)$ is less than p_i and there are $t_i = p_i - \rho(p_i)$ residues $(mod \ p_i)$ $0 < a_{i,1} < a_{i,2} < \dots < a_{i,t_i} \leq p_i$ which are not the solutions of (3). Let $u = \prod_{1 \leq i \leq r} t_i$. From the Chinese Remainder Theorem, the systems of the linear congruences

$$\begin{cases} x \equiv a_{1,j_1} (mod \ p_1) \ , \ 1 \le j_1 \le t_1 \\ \dots \\ x \equiv a_{r,j_r} (mod \ p_r) \ , \ 1 \le j_r \le t_r \end{cases}$$
(31)

have u solutions $x \equiv b_1, b_2, ..., b_u \pmod{m}$ and $n \equiv b_j \pmod{m}$ imply (P(n), m) = 1. Instead of P(n), we can consider the product

 $T_j(n) = P(mn + b_j) = P_1(mn + b_j)P_2(mn + b_j) \dots P_k(mn + b_j), 1 \le j \le u$ which satisfy $(T_j(n), m) = 1$ for all n and $P_i(mn + b_j)$, $1 \le i \le k$ are pairwise coprime for all n.

Example. Let's consider the set of four primes of the form n-5, n-1, n+1, n+5, we have m = 30. In order that the values of these four polynomials are pairwise coprime, if and only if n satisfies one of the following systems of linear congruences

$$\begin{cases} n \equiv 0 & (mod \ 2) \\ n \equiv 0 & (mod \ 3) \\ n \equiv \pm 2 & (mod \ 5) \end{cases}$$

Their solutions are $n \equiv \pm 12 \pmod{30}$. Hence, the problem reduced to the following two possible sets

$\begin{cases} P_1(t) = 30t - 7\\ P_2(t) = 30t - 11\\ P_3(t) = 30t - 13\\ P_3(t) = 20t - 13 \end{cases}$	and	$\begin{cases} P_1(t) = 30t + 17 \\ P_2(t) = 30t + 13 \\ P_3(t) = 30t + 11 \\ P_3(t) = 20t + 7 \end{cases}$
$P_4(t) = 30t - 17$		$\binom{13(0)}{P_4(t)} = 30t + 7$

for which m = 1.

Let's consider , for example , the set on the right side. We have

$$\begin{cases} \rho(p) = 0 & p = 2,3,5 \\ \rho(p) = 4 & p > 5 \end{cases}$$

and

$$C(P_1, P_2, P_3, P_4) = \frac{15^4}{4^4}C_4$$

where

$$C_4 = \prod_{p>5} \left(1 - \frac{6p^2 - 4p + 1}{(p-1)^4} \right) \approx 0.62974$$

In this case, the numerical computation shows that the left side of (26) is quite close to the main term .

Secondly, let's consider the error term .

Since *m* is determined by the polynomial *P*, so $R_P(m, X)$ is only dependent on *P* and *X* in fact.

The term O(1) in (27) is a constant, which is only dependent on the polynomial P and can be easily determined in a single case.

From the convergency of series (24), we have $R_{P,1}(m,X) = o(X)$, when X tends to infinity.

When P(n) is an even function, It's easy to estimate $R_{P,3}(m,X)$. If d > a = P(0), then $\Phi_P(d,m) = 0$, we have

$$R_{P,3}(m,X) = O(\sum_{1 \le d \le a} (\log d)^k) = O(1)$$

Therefore, in this case, the estimation of $R_P(m, X)$ reduced to the estimation of $R_{P,2}(m, X)$.

6. Examples for k = 1

Bateman-Horn conjecture is a quite general conjecture, it has a lot of special cases. First, we consider the case k = 1. In this case, m = 1 and

$$C(P) = \prod_{p} \frac{p - \rho(p)}{p - 1} \tag{32}$$

For the simplest case P(n) = n , we have $\rho(p) = 1$, $\mathcal{C}(P) = 1$ and

$$\sum_{1 \le n \le X} \Lambda(n) = X + R_P(X) \tag{33}$$

where

$$R_P(X) = \sum_{1 \le d \le X} \mu(d) \log d \cdot \left\{\frac{X}{d}\right\} + X \cdot \sum_{d > X} \frac{\mu(d) \log d}{d}$$
(34)

(33) is another explicit formula for Chebyshev's $\psi(x)$ without resorting the zeros of Riemann zeta function [24]. $R_P(X) = o(X)$ implys Prime Number Theorem and $R_P(X) = O\left(X^{\frac{1}{2}}(\log X)^2\right)$ would imply Riemann Hypothesis [20]. For P(n) = an + b, 0 < b < a, (a, b) = 1, we have $\rho(p) = 1$, if $p \nmid a$, and $\rho(p) = 0$, if $p \mid a$, therefore

$$C(P) = \prod_{p \mid a} \frac{p}{p-1} = \frac{a}{\varphi(a)}$$
(35)

where $\varphi(n)$ is the Euler's totient function and (26) becomes

$$\sum_{1 \le n \le X} \Lambda(an+b) = \frac{1}{\varphi(a)} (aX+b) + R_P(X)$$
(36)

where

$$R_{P}(X) = X \cdot \sum_{\substack{d > aX+b \\ (d,a)=1}} \frac{\mu(d) \log d}{d} - \sum_{\substack{1 < d \le aX+b \\ (d,a)=1}} \mu(d) \log d \cdot \psi\left(\frac{X-\nu}{d}\right) + \sum_{\substack{1 < d \le aX+b \\ (d,a)=1}} \mu(d) \log d \cdot \psi\left(\frac{-\nu}{d}\right) - \frac{b}{\varphi(a)}$$
(37)

where ν is the solution of the congruence $at+b\equiv 0(mod\;d),$ $0<\nu\leq d$.

(36) provides an explicit formula for a sum over the powers of primes in an arithmetic progressions without resorting the zeros of Dirichlet L-function,[24].

For $P(n) = n^2 + a$, $a \neq -b^2$, P(n) is irreducible in $\mathbf{Q}[\mathbf{x}]$ and is an even function. We have $\rho(2) = 1$ and $\rho(p) = 1 + \left(\frac{-a}{p}\right)$, p > 2. Hence

$$\sum_{\substack{n^2+a \ge 1 \\ p>2}} \Lambda(n^2 + a)$$

= $X \cdot \prod_{p>2} (1 - (\frac{-a}{p}) \frac{1}{p-1}) + R_{P,1}(X) + R_{P,2}(X) + O(1)$ (38)

where

$$R_{P,2}(X) = -\sum_{1 \le d \le X^2 + a} \mu(d) \log d \cdot \Psi_P(d, X)$$
(39)

As we mentioned above, C. Hooley had investigated the sum $\sum_{n\leq X} \tau(n^2+a)$ related to $P(n)=n^2+a$ and proved

$$\sum_{1 \le d \le X} \Psi_P(d, X) = O\left(X^{\frac{8}{9}} (\log X)^3\right)$$
(40)

from (40) , we can see some hope for proving $R_{P,2}(X) = o(X)$.

For the primes of the form $n^4 + 1$, [3], and generalized Fermat primes of the form $F_{n,t} = n^{2^t} + 1$, [4], we can get similar results.

7. Examples for k = 2

If both n-1 and n+1 are primes, then we call them twin primes. Generally, we can consider the generalized twin primes, the pair of primes n-a and n+a $(a \ge 1)$. In this case, $P(n) = (n-a)(n+a) = n^2 - a^2$ is an even function and m = 2a, H = a + 2 and $\rho(p) = 1$, p + 2a; $\rho(p) = 2$, $p \nmid 2a$. Hence

$$C(P_1, P_2) = \prod_{p+2a} (1 - \frac{1}{p})^{-1} \prod_{p+2a} (1 - \frac{2}{p}) (1 - \frac{1}{p})^{-2}$$

= $2 \prod_{p>2} \left(1 - \frac{1}{(p-1)^2} \right) \prod_{\substack{p+a \ p>2}} \frac{p-1}{p-2}$ (41)

and (26) becomes

$$\sum_{\substack{a+2 \le n \le X \\ (n+a,2a)=1}} \Lambda(n-a)\Lambda(n+a)$$

= $X \cdot C(P_1, P_2) + R_{P,1}(2a, X) + R_{P,2}(2a, X) + O(1)$ (42)

where

$$R_{P,1}(2a,X) = -\frac{1}{2} X \prod_{p \mid 2a} \left(1 - \frac{1}{p}\right) \sum_{\substack{d > X^2 - a^2 \\ (d,2a) = 1}} \frac{\mu(d) 2^{\omega(d)} (\log d)^2}{d}$$
$$R_{P,2}(2a,X) = \frac{1}{2} \sum_{\substack{1 < d \le X^2 - a^2 \\ (d,2a) = 1}} \mu(d) (\log d)^2 \cdot \Psi_P(d,2a,X)$$

8. Application to Goldbach Conjecture

Famous Goldbach conjecture on even integers is quite similar to the generalized twin primes problem, but there are some differences also. Let $N = 2X, X \ge 4$ be an even integer, Goldbach guessed N always can be expressed as the sum of two primes, N = p + q. If we write p = X - n, $1 \le n \le X - 2$, then q = X + n (We ignore the unique case p = q). Therefore, in this case we should consider the polynomial $P(n) = (X - n)(X + n) = X^2 - n^2$. P(n) has the negative leading coefficient, it does not satisfy the condition (a) and $P(0) = X^2$ is unbounded. But, since it has positive values for $1 \le n \le X - 2$, we can also apply (18) and lemma 2 to the integer set

$$E = \{P(n) = X^2 - n^2 : 1 \le n \le X - 2, (X + n, 2X) = 1\}$$

In this case, we also have $\rho(p) = 1$, $p + 2X$; $\rho(p) = 2$, $p \nmid 2X$.
Therefore, we have

$$\sum_{\substack{1 \le n \le X-2 \\ (X+n,2X)=1}} \Lambda(X-n) \cdot \Lambda(X+n)$$

= $\frac{1}{2!} \sum_{\substack{1 \le n \le X-2 \\ (X+n,2X)=1}} \sum_{d \mid X^2-n^2} \mu(d) (\log d)^2$
= $\frac{1}{2} \sum_{\substack{1 \le d \le X^2-1 \\ (d,2X)=1}} \mu(d) (\log d)^2 \sum_{\substack{d \mid X^2-n^2 \\ 1 \le n \le X-2 \\ (X+n,2X)=1}} 1$
= $\frac{1}{2} \sum_{\substack{1 \le d \le X^2-1 \\ (d,2X)=1}} \mu(d) (\log d)^2 \cdot ((X-2) \frac{\rho(d)}{d} \prod_{p \mid 2X} \left(1 - \frac{\rho(p)}{p}\right) + \Psi_p(d, 2X, X-2) - \Phi_p(d, 2X))$

$$= X \cdot \frac{1}{2} \prod_{p + 2X} \left(1 - \frac{1}{p} \right) \sum_{\substack{1 < d \\ (d, 2X) = 1}} \frac{\mu(d)\rho(d)(\log d)^2}{d} + R_P(2X, X - 2) + O(1)$$

$$= X \cdot C(P_1, P_2) + R_{P,1}(2X, X - 2) + R_{P,2}(2X, X - 2) + R_{P,3}(2X, X - 2) + O(1)$$
(43)

where

$$R_{P,1}(2X, X-2) = -\frac{X-2}{2} \prod_{p + 2X} \left(1 - \frac{1}{p}\right) \sum_{\substack{d > X^2 - 1 \\ (d, 2X) = 1}} \frac{\mu(d)\rho(d)(\log d)^2}{d}$$
(44)

$$R_{P,2}(2X, X-2) = \frac{1}{2} \sum_{\substack{1 < d \le X^2 - 1 \\ (d, 2X) = 1}} \mu(d) (\log d)^2 \cdot \Psi_P(d, 2X, X-2)$$
(45)

$$R_{P,3}(2X, X-2) = -\frac{1}{2} \sum_{\substack{1 < d \le X^2 - 1 \\ (d, 2X) = 1}} \mu(d) (\log d)^2 \cdot \Phi_P(d, 2X)$$
(46)

and $C(P_1, P_2)$ is the same as (41) shows, we need only to replace a in (41) by X.

Since $\Phi_P(d, 2X) = \sum_{j+2X} \mu(j) \Phi_P(dj)$ and $P(0) = X^2$, but $dj \nmid X^2$, from (23) we have

$$R_{P,3}(2X, X-2) = 0 \tag{47}$$

So, the problem reduced to the estimation of $R_{P,2}(2X, X - 2)$ again.

It has been proved that the asymptotic formula (43) valid for almost all $N = 2X \cdot ([19], p. 444)$.

8. Conclusion

Up to now, though the numerical computations support Bateman-Horn conjecture strongly in many cases, it is still unproved except the simplest cases P(n) = n and P(n) = an + b, (a, b) = 1. Goldbach conjecture has been checked up to very large even number, but it is unproved also. Now, from (26), the problem reduced to the estimation of the error term $R_P(m, X)$. Specially, when P(n) is an even function, the problem reduced to the estimation of $R_{P,2}(m, X)$ further.

As H. Iwaniec noticed that Möbius function $\mu(n)$ has 'Möbius randomness law' ([18], p. 338). In (29) , the factor $\Psi_P(d, m, X)$ is a sum of the values of $\psi(n)$ which has the period 1 and the values in the interval $\left(-\frac{1}{2}, \frac{1}{2}\right]$, so we can naturally expect that there is ' $\Psi_P(d, m, X)$ randomness law' also and there may be a good cancellation in the sum of (29) . Even more, we can expect $R_P(m, X) = o(X)$. If this is the case, then Bateman-Horn conjecture would be proved .

Another possible approach is considering the possible oscillation property of the error term . The result of computation shows the error term may be oscillating and changing signs infinitely often when X tends to infinity. As the difference of a step function and a linear function, the error term is oscillating naturally. If this is the case, then the sum $S(P_1, P_2, ..., P_k; X)$ would tends to infinity with X, since it is a nondecreasing function of X.

Acknowledgement. I would like to thank the library of Math. Dept.

15

of Sichuan Univ. and the library of the Chinese Academy of Science for providing references. I would like to thank all authors who published their papers on net, so that I can get a lot of useful information from net.

I would like to thank Prof. A.Granville for his understanding and helps and also to thank Prof. A.Lei for his warm helps.

I would like to thank my family also, a special thanks to my daughter, her consistent support and encouragement help to bring about this paper.

References

- [1] P.T.Bateman, R.A.Horn A Heuristic Asymptotic Formula Concerning the Distribution of Prime Numbers, Math. Comp. **16** (1962), 363-367.
- [2] D. Shanks On the Conjecture of Hardy & Littlewood Concerning the Number of Primes of the Form $n^2 + a$, Math. Comp. **14** (1960), 321-332.
- [3] D. Shanks On Numbers of the Form $n^4 + 1$, Math. Comp. **15** (1961), 186-189.
- [4] Y. Gallot A Problem on the Conjecture Concerning the Distribution of Generalized Fermat Prime Numbers , 2003.
- [5] G.H. Hardy, J.E. Littlewood Some Problems of 'Partitio Numerorum'; III: On the Expression of a Number as a Sum of Primes, Acta Math., 44 (1923), 1-70.
- [6] S. Baier On the Bateman-Horn Conjecture, J. Number Theory, 96 (2002) 432-448.
- [7] T. Foo Chebotarëv Density and the Bateman-Horn Constant, arXiv:1109.3040v4[Math.NT] 4 Oct 2011.
- [8] K. Conrad Hardy-Littlewood Constants, in Mathematical Properties of Sequences and Other Combinatorial Structures, Kluwer, 2003, 133-154.
- [9] P. Erdös On the Sum $\sum d(f(n))$, J. London Math. Soc. **27** (1952), 7-15.
- [10] C. Hooley An Asymptotic Formula in the Theory of Numbers,

Proc. London Math. Soc. Ser.3, 7 (1957), 396-413.

- [11] C. Hooley On the Representation of a Number as the Sum of a Square and a Product, Math. Z., **69** (1958), 211-227.
- [12] C. Hooley On the Number of Divisors of Quadratic Polynomials, Acta Math. Vol. 110, No.1,(1963), 97-114.
- [13] H. G. Diamond Elementary Methods in the Study of the Distribution of Prime Numbers, Bull. Amer. Math. Soc. Vol. 7, No. 3, (1982),553-589.
- [14] H.G. Diamond, P. Erdös On Sharp Elementary Prime Number Estimates, L'Enseignement Math. **26** (1980), 313-321.
- [15] T.M. Apostol Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
- [16] P.T. Bateman, H.G. Diamond Analytic Number Theory, An Introductory Course, World Scientific, New Jersey, 2004.
- [17] G.Greaves Sieves in Number Theory, Springer-Verlag, New York, 2001.
- [18] L.G. Hua 数论导引, 科学出版社, 1979.
- [19] H. Iwaniec, E. Kowalski Analytic Number Theory, AMS, Providence, Rhode Island, 2004.
- [20] A. Ivić The Riemann Zeta-Function, Theory and Applications, Dover Publications, New York, 1985.
- [21] W.Narkiewicz, The Development of Prime Number Theory, Springer-Verlag, Berlin, 2000.
- [22] K. Ireland , M. Rosen A Classical Introduction to Modern Number Theory, Springer-Verlag, New York , 1990.
- [23] M.B. Nathanson Additive Number Theory, The Classical Bases, Springer-Verlag, New York, 1996.
- [24] H. Davenport, Multiplicative Number Theory, Revised by H. Montgomery, Springer-Verlag, New York, 1980.
- [25] C.D. Pan, C.B. Pan 解析数论基础, 科学出版社, 1999.
- [26] Y.Wang Goldbach Conjecture, World Scientific, Singapore, 1984.
- [27] Y.Wang 王元论哥德巴赫猜想,山东教育出版社, 1999.