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                                                                     ABSTRACT 

         For a set  𝑬   of  integers , for which  𝜔(𝑛) ≥ 𝑘 ,∀ 𝑛 ∈ 𝑬,𝒌 ∈ 𝒁+ , where  𝜔(𝑛)  is the  
number of  the  different  prime  factors  of  n,  We  give  a  sieve, which can  separate  the  ones  
for  which  𝜔(𝑛) = 𝑘   from   others .   
         Applying  this  sieve  to Bateman-Horn conjecture  and  Goldbach conjecture  , we obtain   
an explicit  asymptotic  formula with both  the main term and   the  error  term  .  This  provides  
a  possible  starting  point  for  dealing with some famous problems, Like  twin   primes,  primes   
of  the form  𝑛2 + 𝑎 ,Goldbach conjecture and  so on .                                                                                      
 Key  words  and  phrases : sieve;  Bateman-Horn conjecture; Goldbach conjecture ; explicit  
asymptotic  formula;   main term;    error term;    twin primes;  primes of the form  𝑛2 + 𝑎 .                  
 2010  Mathematics  Subject  Classification  :  11N32, 11N35, 11P32    
                                             
                                                           1. Introduction 

There are  a  lot  of  famous  problems in number theory which puzzled people 
in centuries.  For  example,  the  infiniteness  of  the  primes  of   the   form 
  𝑛2 + 1 ,the  infiniteness  of   the  twin primes,  the  infiniteness  of  the   integers  
𝑛  for which   𝑛,𝑛 + 2,𝑛 + 6  are  all  primes   and  so  on . 
      G.H.Hardy  and  J.E.Littlewood  [5], [21]  had  given  a  series  of  heuristic  
asymptotic formulas  for  the  additive  problems  on  primes  using  circle  method.     
      In  1962 ,  P.T.Bateman  and R.A.Horn  [1]  had  given a  famous  heuristic 
asymptotic  formula  concerning  the distribution of primes.  A  lot  of  problems   
are  special cases  of  it.  Their  conjecture  is  as  follows .   
      Suppose  𝑃1,𝑃2, … ,𝑃𝑘  ∈ 𝒁[x]    and   they  satisfy  the  following  three  
conditions 
              (𝑎)  The  leading coefficient  of  every  𝑃𝑖   is   positive. 
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              (𝑏)  Every   𝑃𝑖    is   irreducible   in  𝑸[𝑥]  and  no  two  of  them  differ  by 
                     a  constant  factor . 
              (𝑐)  There is  no  prime  p  such  that  p  divides  the  product 
                      𝑃(𝑛)= 𝑃1(𝑛)𝑃2(𝑛) …𝑃𝑘(𝑛)   for  all  𝑛 ∈ 𝒁+ . 
Let  ℎ𝑖  be  the   degree  of  𝑃𝑖(𝑛)  and    Q(𝑃1,𝑃2, … ,𝑃𝑘;𝑋)  denote   the number  
of positive  integers  𝑛 (1 ≤ 𝑛 ≤ 𝑋)  such that  𝑃1(𝑛) , 𝑃2(𝑛), … ,𝑃𝑘(𝑛)  are  all 
primes.   Bateman  and  Horn  obtained  the following  heuristic  asymptotic 
formula   by  a  probabilistic  consideration 

     Q(𝑃1,𝑃2, … ,𝑃𝑘;𝑋)  ∼  ℎ1
−1ℎ2

−1 …ℎ𝑘
−1C(𝑃1,𝑃2, … ,𝑃𝑘  )∫ (log𝑢)−𝑘𝑋

2 du    (1) 
where 

           𝐶(𝑃1,𝑃2, ... ,𝑃𝑘)  =  ∏ �(1− 𝜌(𝑝)
𝑝

)(1 − 1
𝑝

)−𝑘�𝑝                                                 (2) 

 
where  𝜌(𝑝)  denote  the  number of  the   solutions  of  the  congruence 
                  𝑃(𝑥) ≡ 0  (𝑚𝑚𝑚 𝑝)                                                                                      (3) 
and  p  ranges  over  all  primes . 
        An   upper   bound  for  Q(𝑃1,𝑃2, … ,𝑃𝑘;𝑋)  had  been   found  [16],[17] 
 
                Q(𝑃1,𝑃2, … ,𝑃𝑘;𝑋) ≤ 2𝑘𝑘!𝐶(𝑃1,𝑃2, ... ,𝑃𝑘){1 + 𝑜(1)}𝑋/(log𝑋)𝑘       
 
but, as  I known ,  no  nontrivial   lower bound  has  been  found .  
       By  similar  consideration,  we  can  deal with  the following  sum 
 
         𝑆(𝑃1,𝑃2, … ,𝑃𝑘;𝑋)   =   ∑ 𝛬(𝑃1(𝑛))𝛬(𝑃2(𝑛)) ∙∙∙ 𝛬(𝑃𝑘(𝑛))1≤𝑛≤𝑋                   (4) 
 
where  𝛬(𝑛)  is  the  von  Mangoldt  function  and   obtain  a  similar  heuristic  
asymptotic  formula 
 
               𝑆(𝑃1,𝑃2, … ,𝑃𝑘;𝑋)   ∼    C(𝑃1,𝑃2, … ,𝑃𝑘 ) ∙ 𝑋                                              (5) 
 
       S.Baier  [6]  proved   that  (1)  and  (5)  are  equivalent .  
       In  this  paper ,  we  give  a  sieve , which  can  generate  an explicit  
asymptotic  formula  with  both  the main term  and   the  error  term   of   
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S(𝑃1,𝑃2, … ,𝑃𝑘;𝑋) .  This  provides  a  possible  starting  point  for  dealing with 
some  famous  problems, Like  twin   primes,  primes   of   the  form  𝑛2 + 1  and   
so on .                                                                                       . 
 
          2.   An  Identity  of  Arithmetic Function  and   the  Polynomial  Sieve 
 
      As  the   analytic  form  of  the  Fundamental  Theorem  of  Arithmetic,  the  
Chebyshev’s  Identity  plays  an  irreplaceable   role . 
 
                                                𝛬 ∗  1 = 𝐿                                                                        (6) 
 
By  differentiation  of  (6) ,  we   obtain    Selberg’s  identity 
 
                                                 𝐿𝐿 + 𝛬 ∗ 𝛬 =  𝐿2 ∗ 𝜇                                                    (7) 
where   𝜇  is   the  Möbius  function. 
       Starting   from  (6)  and  (7) ,  we can  prove  the  Prime  Number Theorem  
by  analytic  or  elementary  methods  [13],[14],[15].   Here ,  we  choose  a  
slightly  different   way. 
     We   denote    by   𝑒1  the  unit  of  arithmetic  functions  and  by  1  the 
 function  for  which  1(𝑛) = 1  for all   𝑛 ∈ 𝒁+  .  We  have 
 
                                               𝜇 ∗  1 =  𝑒1                                                                       (8) 
 
By  differentiation  of  (8)  and   L𝑒1 = 0  we  obtain  the   well-known   identity 
 
                                               𝛬 = −𝐿𝐿 ∗  1                                                                    (𝐴1) 
or 
                                              𝜇 ∗ 𝛬 =  −𝐿𝐿                                                                    (9)     
 
By  differentiation  of  (9)  ,  we  obtain 
 
                                          𝜇  ∗  (𝛬 ∗  𝛬 − 𝐿𝐿) = 𝐿2𝜇                                                (10) 
or              
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                                 𝛬∗2 = 𝛬 ∗  𝛬 = 𝐿2𝜇 ∗  1 + 𝐿𝐿                                                 (𝐴2)  
 
By differentiation  of  (10)   further,  from  (9)   and   (10)   we   obtain 
 
                                𝜇 ∗ (𝛬∗3 − 3𝛬 ∗ 𝐿𝐿 + 𝐿2𝛬) =  −𝐿3𝜇                                       (11) 
or 
                               𝛬∗3 =  𝛬 ∗  𝛬 ∗  𝛬 = −𝐿3𝜇 ∗  1 + 3𝛬 ∗  𝐿𝐿 −  𝐿2𝛬             (𝐴3)    
 
Generally ,  by  𝑘 − 1   times   differentiation   of  (9) ,  we  obtain 
 
                                ∑ �𝑘−1𝑖 �𝐿

𝑘−1−𝑖𝜇 ∗ 𝐿𝑖𝛬0≤𝑖≤𝑘−1 =  −𝐿𝑘𝜇                                      (12) 
 
(12)  is  a  recursive  formula   for    𝐿𝑖𝜇 ,  From  (9), (10),  (11)   and  (12)    we  
can  obtain  the  following  identity  by  induction 
       Theorem  1 .   For  every  positive   integer  𝑘 ,  the  following   arithmetic 
function  identity  holds   
  
                                                𝛬∗𝑘  =   (−1)𝑘𝐿𝑘𝜇 ∗  1   +  𝐵𝑘                                    (𝐴𝑘)    
where 
 
𝐵𝑘   =  ∑  𝑎(𝑘, 𝑖1, 𝑖2, … , 𝑖𝑡 , 𝑗1, 𝑗2, … , 𝑗𝑡)  ∙  𝐿𝑖1𝛬∗𝑗1 ∗  𝐿𝑖2𝛬∗𝑗2 ∗𝑖1+𝑖2+⋯+𝑖𝑡+𝑗1+𝑗2+⋯+𝑗𝑡=𝑘

𝑗1+𝑗2+⋯+𝑗𝑡<𝑘,𝑗𝑟≥1 (1≤𝑟≤𝑡)

                                                               … ∗  𝐿𝑖𝑡𝛬∗𝑗𝑡                                                         (13) 
 
where        𝑎(𝑘, 𝑖1, 𝑖2, … , 𝑖𝑡 , 𝑗1, 𝑗2, … , 𝑗𝑡)   are   integers .       
 
       Remark .   In  every  term  of  𝐵𝑘  ,   the  sum of  the  exponents  of  𝛬  is  less 
than 𝑘 .  We  denote  by   𝜔(𝑛)   the  number of  the  different  prime  factors  of  
𝑛 .  If   𝜔(𝑛) ≥ 𝑘 ,  then   𝐵𝑘(𝑛) = 0   by  the  pigeon  hole  principle . From  
(𝐴𝑘)   ,  we  have  
                          𝛬∗𝑘(𝑛) =  (−1)𝑘 ∑ 𝜇(𝑑)(log𝑑)𝑘𝑑⃓ 𝑛                                               (14) 
 
 If  𝜔(𝑛) = 𝑘 , 𝑛 = 𝑝1𝛼1𝑝2𝛼2 … 𝑝𝑘𝛼𝑘 , 𝑝𝑖  are  different  primes,  from  (14)  ,  we  
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obtain  
                           𝑘! ∙ log 𝑝1 ∙ log 𝑝2 ∙ … ∙  log 𝑝𝑘 
                     =  ∑ (−1)𝑘+𝑖 ∑ (1≤𝑗1<𝑗2<⋯<𝑗𝑖≤𝑘 log 𝑝𝑗1 + ⋯+ log 𝑝𝑗𝑖)

𝑘
1≤𝑖≤𝑘           (15) 

which   is  equivalent  to  the   following  identity  of  polynomials  in  𝑘   variables 
 
              𝑘! 𝑥1𝑥2 … 𝑥𝑘 =  ∑ (−1)𝑘+𝑖 ∑ (1≤𝑗1<𝑗2<⋯<𝑗𝑖≤𝑘 𝑥𝑗1 + ⋯+ 𝑥𝑗𝑖)

𝑘
1≤𝑖≤𝑘         (16) 

 
If  𝜔(𝑛) = 𝑡 > 𝑘 ,   then  both  sides   of   (14)    vanish  ([15],𝑝. 47).  In  this  
case ,  the   equivalent   polynomial  identity  is   
 
                                  0 =   ∑ (−1)𝑖 ∑ (1≤𝑗1<𝑗2<⋯<𝑗𝑖≤𝑡 𝑥𝑗1 + ⋯+ 𝑥𝑗𝑖)

𝑘
1≤𝑖≤𝑡             (17) 

 
 Therefore,  for  any  set  𝑬  of  integers ,  for which  𝜔(𝑛) ≥ 𝑘 ,∀ 𝑛 ∈ 𝑬 ,   acting  
( 𝐴𝑘)  on   the   integers  of  𝑬 ,  we can  separate  the  ones  for  which  𝜔(𝑛) = 𝑘   
from   others . If  we  consider  the  sum   over  𝑬 ,  from  (14)    we  get 
               
                     ∑    𝛬∗𝑘(𝑛)  = (−1)𝑘 ∑ ∑ 𝜇(𝑑)(log𝑑)𝑘𝑑⃓ 𝑛𝑛∈𝐸n∈E,ω(n)=k                 (18) 
 
  So,   (18)  provides   some  kind  of  sieve .  We  call  it  polynomial  sieve  from  
the  discussion  above.  
        Golomb  [8]  had  obtained   a  result  similar  to  (14).    
 
                                                    3. Some lemmas 
 
        C . Hooley  [12]  had  given  a  formula  for quadratic  polynomials  in  his  
study  on  the sum  ∑ 𝜏(𝑛2𝑛≤𝑋 + 𝑎) , where  𝜏(𝑛)  is  the number of  divisors  of  
𝑛 .  We   generalize   his   result  slightly  and  the  proof  is  almost  unchanged . 
       Lemma  1. (C. Hooley)  Let  𝑃(𝑛)   be  a  polynomial  with  integral  
coefficients, 𝑑 ∈𝐙+  , 𝑋∈𝐑+ and  
 
                                       T𝑃(𝑑,𝑋) =  ∑ 1𝑃(𝑛)≡0 (𝑚𝑚𝑚 𝑑) 

1≤𝑛≤𝑋
                                              (19) 

Then  we have 
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                                      T𝑃(𝑑,𝑋) = 𝑋 𝜌(𝑑)
𝑑

+ Ψ𝑃(𝑑,𝑋) −  Φ𝑃(𝑑)                             (20) 

  
where   𝜌(𝑑)  is  the  number  of  the   solutions  of   the  congruence  
𝑃(𝑥) ≡ 0 (𝑚𝑚𝑚 𝑑)  and   
 

                                     Ψ𝑃(𝑑,𝑋) =  ∑ 𝜓(𝑋−𝜈
𝑑𝑃(𝜈)≡0 (𝑚𝑚𝑚 𝑑) 

0<𝜈≤𝑑
)                                     (21) 

                                     Φ𝑃(𝑑) =  ∑ 𝜓(−𝜈
𝑑𝑃(𝜈)≡0 (𝑚𝑚𝑚 𝑑) 

0<𝜈≤𝑑
)                                           (22) 

 

where   𝜓(𝑢) =  1
2
− { 𝑢 }  , { 𝑢 }  is  the  fraction  part  of  𝑢 .  

 
          Proof.        T𝑃(𝑑,𝑋) =  ∑ ∑ 1𝑛≡𝜈 (𝑚𝑚𝑚 𝑑)

1≤𝑛≤𝑋
𝑃(𝜈)≡0 (𝑚𝑚𝑚 𝑑)

0<𝜈≤𝑑
    

                                           =  ∑ (�𝑋−𝜈
𝑑
� + 1)𝑃(𝜈)≡0 (𝑚𝑚𝑚 𝑑)  

0<𝜈≤𝑑
 

                                           =  ∑ (�𝑋−𝜈
𝑑
� − �−𝜈

𝑑
�)𝑃(𝜈)≡0 (𝑚𝑚𝑚 𝑑)  

0<𝜈≤𝑑
  

                                           =  ∑ ( 𝑋
𝑑

+ 𝜓�𝑋−𝜈
𝑑
� − 𝜓(−𝜈

𝑑
))𝑃(𝜈)≡0 (𝑚𝑚𝑚 𝑑)  

0<𝜈≤𝑑
   

                                           =   𝑋 𝜌(𝑑)
𝑑

+ Ψ𝑃(𝑑,𝑋) −  Φ𝑃(𝑑)                                  □ 

       Remark .  When  𝑃(𝑛)  is  an   even  function ,  the situation  becomes  simpler  
and   a  lot  of   important   problems   satisfy   this  requirement .   Let   𝑃(0) = 𝑎,  
from     𝜓(𝑢) +  𝜓(−𝑢) = 0,𝑢 ∉ 𝒁 ,  we  have         
  

                                    Φ𝑃(𝑑) = �
  0                 𝑑 ⫮ 𝑎                
   1
2

                 𝑑⃓  𝑎                                                  (23) 

 
especially ,  Φ𝑃(𝑑) = 0   for    𝑑 >  𝑎  .  
       We  can  generalize   the   Lemma 1  slightly . 
       Lemma 2. .    Let  𝑃(𝑥)   be  a  polynomial  with  integral  coefficients   and  
𝑚 ∈𝐙+  , 𝑋∈𝐑+     and 
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                                       T𝑃(𝑑,𝑚,𝑋) =  ∑ 1𝑃(𝑛)≡0 (𝑚𝑚𝑚 𝑑) 

1≤𝑛≤𝑋,(𝑃(𝑛),𝑚)=1
                                        

Then  we have 
                                        T𝑃(𝑑,𝑚,𝑋) =

   �
0                                                                                                            (𝑑,𝑚) > 1
𝑋 𝜌(𝑑)

𝑑
∏ �1 − 𝜌(𝑝)

𝑝
�𝑝⃓ 𝑚 + Ψ𝑃(𝑑,𝑚,𝑋) −  Φ𝑃(𝑑,𝑚)              (𝑑,𝑚) = 1         

  
where      
                                     Ψ𝑃(𝑑,𝑚,𝑋) =  ∑ 𝜇(𝑗)𝑗⃓ 𝑚 Ψ𝑃(𝑑𝑑,𝑋)                                      
                                     Φ𝑃(𝑑,𝑚) =  ∑ 𝜇(𝑗)𝑗⃓ 𝑚  Φ𝑃(𝑑𝑑)                                             
         Proof . It  is  clear  that   (𝑑,𝑚) > 1   imply     T𝑃(𝑑,𝑚,𝑋) =  0 .  if   
(𝑑,𝑚) = 1  ,   then   
                T𝑃(𝑑,𝑚,𝑋) =  ∑ ∑ 𝜇(𝑗)𝑗⃓ (𝑃(𝑛),𝑚)𝑃(𝑛)≡0 (𝑚𝑚𝑚 𝑑) 

1≤𝑛≤𝑋
 

                = ∑ 𝜇(𝑗)∑ 1𝑑𝑑⃓ (𝑃(𝑛) 
1≤𝑛≤𝑋

 
𝑗⃓ 𝑚  

                = ∑ 𝜇(𝑗)(𝑗⃓ 𝑚 𝑋 𝜌(𝑑𝑑)
𝑑𝑑

+ Ψ𝑃(𝑑𝑑,𝑋) −  Φ𝑃(𝑑𝑑)) 

                = 𝑋 𝜌(𝑑)
𝑑
∑ 𝜇(𝑗) 𝜌(𝑗)

𝑗𝑗⃓ 𝑚 + ∑ 𝜇(𝑗)𝑗⃓ 𝑚 Ψ𝑃(𝑑𝑑,𝑋) − ∑ 𝜇(𝑗)𝑗⃓ 𝑚  Φ𝑃(𝑑𝑑) 

                = 𝑋 𝜌(𝑑)
𝑑
∏ (1 − 𝜌(𝑝)

𝑝
)𝑝⃓ 𝑚 + Ψ𝑃(𝑑,𝑚,𝑋) −  Φ𝑃(𝑑,𝑚)                         □ 

 
       Suppose  𝑃1,𝑃2, … ,𝑃𝑘  ∈ 𝒁[𝑥]  and satisfy the three  conditions  (𝑎), (𝑏), (𝑐)  
above. The product   in  (2)  has   been   proved   to   be   convergent   and   the 
coefficient  𝐶(𝑃1,𝑃2, ... ,𝑃𝑘)   is  often  called  Bateman-Horn  constant  or  Hardy-
Littlewood  Constant  [1],[7],[8],[16].  From   the  condition  (𝑏) ,  it  is  easy  to  
know   that  there  is  a  positive  integer  m   such  that  if  (𝑃(𝑛) ,𝑚) = 1, then  
𝑃𝑖(𝑛)  are  pairwise  coprime . 
       K. Conrad  [8]  obtained  a  very  nice  result ,  he  proved  unconditionally that  
the  Bateman-Horn  constant  has  another  expression. 
       Lemma 3.  (K. Conrad)     Suppose  𝑃1,𝑃2, … ,𝑃𝑘  ∈ 𝒁[𝑥]  and satisfy the three  
conditions  (𝑎), (𝑏), (𝑐) .  For  any  positive  integer  𝑘  and  𝑚, the  series   
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                                            ∑ 𝜇(𝑑)𝜌(𝑑)(log 𝑑)𝑘

𝑑𝑑≥1
(𝑑,𝑚)=1

                                                  (24)  

converges  and  the  equality  
 

      (−1)𝑘

𝑘!
∏ �1 − 𝜌(𝑝)

𝑝
�  ∑ 𝜇(𝑑)𝜌(𝑑)(log 𝑑)𝑘

𝑑𝑑≥1
(𝑑,𝑚)=1

 =   𝐶(𝑃1,𝑃2, . . . ,𝑃𝑘) 𝑝⃓ 𝑚        (25) 

holds , where  𝜌(𝑑)  is  the  number   of  the  solutions  of  the  congruence 
                           𝑃(𝑥)= 𝑃1(𝑥)𝑃2(𝑥) …𝑃𝑘(𝑥) ≡ 0  (𝑚𝑚𝑚 𝑑).    
 
                              4.  Generating   Bateman-Horn   Conjecture     
 
       Now  ,  Let  us  consider  the  sum  (4) .  Suppose  𝑃1,𝑃2, … ,𝑃𝑘  ∈ 𝒁[𝑥]  and 
satisfy the  three  conditions  (𝑎), (𝑏), (𝑐)  above  and  𝑃  is  the   product  of  𝑃𝑖′𝑠 
 and  a  positive  integer  𝑚  satisfies  that  if  (𝑃(𝑛) ,𝑚) = 1, then  𝑃𝑖(𝑛)  are  
pairwise  coprime . From   the   condition  (𝑎)  ,  ∃ 𝐻 ∈  𝒁+ , for  𝑛 ≥ 𝐻   we  have     
𝑃𝑖(𝑛) > 1  for  all  𝑖 . Hence ,  (𝑃(𝑛) ,𝑚) = 1   and  𝑛 ≥ 𝐻   imply  𝜔�𝑃(𝑛)� ≥ 𝑘  . 
Then , for  the  set  of  integers   
                        𝑬 = {𝑃(𝑛):𝐻 ≤ 𝑛 ≤ 𝑋, (𝑃(𝑛),𝑚) = 1}  
From   (18) ,  Lemma 2 , Lemma 3 ,  we  have 
                            𝑘!∑ 𝛬(𝑃1(𝑛))𝛬(𝑃2(𝑛)) …𝛬(𝑃𝑘(𝑛))𝐻≤𝑛≤𝑋

(𝑃(𝑛),𝑚)=1
                                                                           

      =  (−1)𝑘 ∑ ∑ 𝜇(𝑑)(log𝑑)𝑘𝑑⃓ 𝑃(𝑛)𝐻≤𝑛≤𝑋
(𝑃(𝑛),𝑚)=1

   

      =  (−1)𝑘 ∑ ∑ 𝜇(𝑑)(log𝑑)𝑘𝑑⃓ 𝑃(𝑛)1≤𝑛≤𝑋
(𝑃(𝑛),𝑚)=1

+ 𝑂(1)  

      =  (−1)𝑘 ∑ 𝜇(𝑑)(log𝑑)𝑘 ∙1<𝑑≤𝑃(𝑋)
(𝑑,𝑚)=1

∑ 1 +   𝑂(1)𝑑⃓𝑃(𝑛)
1≤𝑛≤𝑋,(𝑃(𝑛),𝑚)=1

   

       =  (−1)𝑘 ∑ 𝜇(𝑑)(log𝑑)𝑘 ∙ (𝑋 𝜌(𝑑)
𝑑
∏ �1 − 𝜌(𝑝)

𝑝
�𝑝⃓ 𝑚1<𝑑≤𝑃(𝑋)

(𝑑,𝑚)=1
  

                                                 +Ψ𝑃(𝑑,𝑚,𝑋) −  Φ𝑃(𝑑,𝑚)) + 𝑂(1)  

       = 𝑋 ∙ (−1)𝑘 ∏ �1 − 𝜌(𝑝)
𝑝
�𝑝⃓ 𝑚 ∑ 𝜇(𝑑)𝜌(𝑑)(log𝑑)𝑘

𝑑1<𝑑≤𝑃(𝑋)
(𝑑,𝑚)=1

      

                           +(−1)𝑘 ∑ 𝜇(𝑑)(log𝑑)𝑘  ∙ Ψ𝑃(𝑑,𝑚,𝑋) 1<𝑑≤𝑃(𝑋)
(𝑑,𝑚)=1
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                           +(−1)𝑘+1 ∑ 𝜇(𝑑)(log𝑑)𝑘 ∙  Φ𝑃(𝑑,𝑚) + 𝑂(1) 1<𝑑≤𝑃(𝑋)
(𝑑,𝑚)=1

            

       = 𝑋 ∙ 𝑘! 𝐶(𝑃1,𝑃2, . . . ,𝑃𝑘) 

                        +𝑋 ∙ (−1)𝑘+1 ∏ �1 − 𝜌(𝑝)
𝑝
�𝑝⃓ 𝑚 ∑ 𝜇(𝑑)𝜌(𝑑)(log𝑑)𝑘

𝑑𝑑>𝑃(𝑋)
(𝑑,𝑚)=1

                          

                         +(−1)𝑘 ∑ 𝜇(𝑑)(log𝑑)𝑘  ∙ Ψ𝑃(𝑑,𝑚,𝑋) 1<𝑑≤𝑃(𝑋)
(𝑑,𝑚)=1

    

                         +(−1)𝑘+1 ∑ 𝜇(𝑑)(log𝑑)𝑘 ∙  Φ𝑃(𝑑,𝑚) + 𝑂(1) 1<𝑑≤𝑃(𝑋)
(𝑑,𝑚)=1

    

Hence ,  we  obtain  Bateman-Horn conjecture  with  error  term. 
      Theorem 2 . The    following    explicit  asymptotic  formula      
 
             ∑ 𝛬(𝑃1(𝑛))𝛬(𝑃2(𝑛)) …𝛬(𝑃𝑘(𝑛))𝐻≤𝑛≤𝑋

(𝑃(𝑛),𝑚)=1
 

                 = 𝑋 ∙ 𝐶(𝑃1,𝑃2, . . . ,𝑃𝑘) + 𝑅𝑃(𝑚,𝑋)                                                          (26) 
 
holds ,  where  the  error  term 
         𝑅𝑃(𝑚,𝑋) =  𝑅𝑃,1(𝑚,𝑋) + 𝑅𝑃,2(𝑚,𝑋) + 𝑅𝑃,3(𝑚,𝑋) + 𝑂(1)                     (27)   
where 

        𝑅𝑃,1(𝑚,𝑋) =   𝑋 ∙ (−1)
𝑘!

𝑘+1
∏ �1 − 𝜌(𝑝)

𝑝
�𝑝⃓ 𝑚 ∑ 𝜇(𝑑)𝜌(𝑑)(log 𝑑)𝑘

𝑑𝑑>𝑃(𝑋)
(𝑑,𝑚)=1

          (28)   

        𝑅𝑃,2(𝑚,𝑋) =  (−1)𝑘

𝑘!
∑ 𝜇(𝑑)(log𝑑)𝑘  ∙ Ψ𝑃(𝑑,𝑚,𝑋) 1<𝑑≤𝑃(𝑋)

(𝑑,𝑚)=1
                          (29) 

        𝑅𝑃,3(𝑚,𝑋) =  (−1)𝑘+1

𝑘!
∑ 𝜇(𝑑)(log𝑑)𝑘  ∙ Φ𝑃(𝑑,𝑚) 1<𝑑≤𝑃(𝑋)

(𝑑,𝑚)=1
                          (30) 

                                             
                                                5.  Some  Remarks 
 
       First,  we  notice    that  the  case   𝑚 > 1    can   be  reduced   to  the  case   
𝑚 = 1  .     without  losing  generality,  we   can  assume   𝑚   squarefree  and  Let  
𝑚 = 𝑝1𝑝2 … 𝑝𝑟  . From  the   condition  (𝑐)   , 𝜌(𝑝𝑖)  is  less  than  𝑝𝑖  and  there  
are  𝑡𝑖 = 𝑝𝑖 − 𝜌(𝑝𝑖) residues  (𝑚𝑚𝑚 𝑝𝑖)    0 < 𝑎𝑖,1 < 𝑎𝑖,2 < ⋯ < 𝑎𝑖,𝑡𝑖 ≤ 𝑝𝑖   which  
are  not   the  solutions  of  (3) .  Let   𝑢 = ∏ 𝑡𝑖 1≤𝑖≤𝑟  .  From   the  Chinese  
Remainder  Theorem ,  the  systems  of   the  linear   congruences 
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                                   �

𝑥 ≡  𝑎1,𝑗1(𝑚𝑚𝑚 𝑝1) ,   1 ≤ 𝑗1 ≤ 𝑡1
…
…

𝑥 ≡  𝑎𝑟,𝑗𝑟( 𝑚𝑚𝑚 𝑝𝑟) ,   1 ≤ 𝑗𝑟 ≤ 𝑡𝑟

                                       (31) 

 
have   𝑢   solutions   𝑥 ≡ 𝑏1, 𝑏2, … , 𝑏𝑢 ( 𝑚𝑚𝑚 𝑚)  and  𝑛 ≡  𝑏𝑗  (𝑚𝑚𝑚 𝑚)   imply 
(𝑃(𝑛),𝑚) = 1 .   Instead  of   𝑃(𝑛) ,  we  can  consider  the  product   
   𝑇𝑗(𝑛) = 𝑃�𝑚𝑚 + 𝑏𝑗� =  𝑃1�𝑚𝑚 + 𝑏𝑗�𝑃2�𝑚𝑚 + 𝑏𝑗�…𝑃𝑘�𝑚𝑚 + 𝑏𝑗� , 1 ≤ 𝑗 ≤  𝑢       
which  satisfy  �𝑇𝑗(𝑛),𝑚� = 1   for  all  𝑛  and  𝑃𝑖(𝑚𝑚 + 𝑏𝑗)  , 1 ≤ 𝑖 ≤ 𝑘   are 
pairwise   coprime   for  all  𝑛.  
        Example.    Let’s   consider  the   set  of  four  primes   of  the  form 
 𝑛 − 5, 𝑛 − 1, 𝑛 + 1, 𝑛 + 5 ,    we  have  𝑚 = 30.  In order  that  the  values  of  
these  four  polynomials   are  pairwise  coprime  ,  if  and  only  if  𝑛  satisfies  one 
of  the  following   systems  of     linear  congruences 

                                   �
𝑛 ≡ 0                    (𝑚𝑚𝑚 2)
𝑛 ≡ 0                   (𝑚𝑚𝑚 3)
𝑛 ≡  ±2               (𝑚𝑚𝑚 5)

 

Their  solutions  are   𝑛 ≡ ±12 ( 𝑚𝑚𝑚 30) .  Hence,  the  problem  reduced  to  the  
following   two   possible   sets 

            

⎩
⎨

⎧
𝑃1(𝑡) = 30𝑡 − 7
𝑃2(𝑡) = 30𝑡 − 11
𝑃3(𝑡) = 30𝑡 − 13
𝑃4(𝑡) = 30𝑡 − 17

            and            

⎩
⎨

⎧
𝑃1(𝑡) = 30𝑡 + 17
𝑃2(𝑡) = 30𝑡 + 13
𝑃3(𝑡) = 30𝑡 + 11
𝑃4(𝑡) = 30𝑡 + 7

            

for  which   𝑚 = 1 .   
       Let’s  consider  , for  example , the  set  on  the  right  side.  We  have 

                                   �𝜌
(𝑝) = 0                                  𝑝 = 2,3,5

𝜌(𝑝) = 4                                   𝑝 > 5        

and  

𝐶(𝑃1,𝑃2,𝑃3,𝑃4) =
154

44 𝐶4 

where 

                                   𝐶4 = ∏ �1 − 6𝑝2−4𝑝+1
(𝑝−1)4 � ≈ 0.62974𝑝>5  
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In  this  case,  the  numerical  computation  shows   that  the  left  side  of  (26)  is 
quite  close  to  the  main  term  . 
 
        Secondly,   let’s  consider  the  error term  .  
        Since  𝑚   is   determined  by  the  polynomial   𝑃  , so  𝑅𝑃(𝑚,𝑋)  is  only  
dependent  on   𝑃  and  𝑋   in  fact  . 
        The  term   𝑂(1)    in   (27)    is  a  constant  ,  which  is  only  dependent  on    
the  polynomial   𝑃  and  can  be  easily  determined  in  a  single  case.            
        From   the    convergency  of   series  (24),  we  have   𝑅𝑃,1(𝑚,𝑋) = 𝑜(𝑋) ,  
when   𝑋  tends  to  infinity. 
      When   𝑃(𝑛)  is  an  even  function,  It’s  easy  to  estimate  𝑅𝑃,3(𝑚,𝑋)  .  If 
𝑑 > 𝑎 = 𝑃(0) , then  Φ𝑃(𝑑,𝑚) = 0 ,  we  have 
                          𝑅𝑃,3(𝑚,𝑋) = 𝑂(∑ (log𝑑)𝑘 ) = 𝑂(1)1<𝑑≤𝑎   
       Therefore ,  in  this  case  , the  estimation  of  𝑅𝑃(𝑚,𝑋)  reduced  to  the   
estimation  of  𝑅𝑃,2(𝑚,𝑋) .  
 
                                            6.  Examples   for  𝒌 = 𝟏 
 
       Bateman-Horn  conjecture  is  a  quite  general   conjecture , it  has  a  lot 
 of  special  cases .  First ,  we   consider   the  case  𝑘 = 1 .   In  this  case , 
𝑚 = 1  and   

                                              𝐶(𝑃) = ∏ 𝑝−𝜌(𝑝)
𝑝−1𝑝                                                            (32) 

 
       For  the   simplest   case   𝑃(𝑛) = 𝑛   ,  we  have   𝜌(𝑝) = 1, 𝐶(𝑃) = 1   and 

                                   ∑ 𝛬(𝑛) = 𝑋 +  𝑅𝑃(𝑋) 1≤𝑛≤𝑋                                                   (33) 
where    

           𝑅𝑃(𝑋) = ∑ 𝜇(𝑑)log 𝑑 ∙ �𝑋
𝑑
� + 𝑋 ∙ ∑ 𝜇(𝑑) log 𝑑

𝑑
 𝑑>𝑋  1≤𝑑≤𝑋                              (34) 

(33)  is  another  explicit   formula  for    Chebyshev’s   𝜓(𝑥)  without  resorting  
the  zeros  of  Riemann  zeta   function [24].  𝑅𝑃(𝑋) = 𝑜(𝑋)  implys   Prime  

Number  Theorem  and  𝑅𝑃(𝑋) = 𝑂 �𝑋
1
2(log𝑋)2�  would  imply  Riemann  

Hypothesis  [20]. 
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       For  𝑃(𝑛) = 𝑎𝑎 + 𝑏,   0 < 𝑏 < 𝑎 , (𝑎, 𝑏) = 1  , we  have   𝜌(𝑝) = 1 , 𝑖𝑖  𝑝 ⫮ 𝑎 ,    
and    𝜌(𝑝) = 0, 𝑖𝑖  𝑝 ⃓ 𝑎 ,   therefore 
                                         𝐶(𝑃) = ∏ 𝑝

𝑝−1
= 𝑎

𝜑(𝑎)𝑝⃓ 𝑎                                                     (35) 

where  𝜑(𝑛)  is  the  Euler’s  totient  function  and   (26)   becomes   

                                    ∑ 𝛬(𝑎𝑎 + 𝑏) = 1
𝜑(𝑎)

(𝑎𝑎 + 𝑏) +  𝑅𝑃(𝑋) 1≤𝑛≤𝑋                    (36)  

where            𝑅𝑃(𝑋) = 𝑋 ∙ ∑ 𝜇(𝑑)𝑙𝑙𝑙𝑙
𝑑

− ∑ 𝜇(𝑑)𝑙𝑙𝑙𝑙 ∙ 𝜓 �𝑋−𝜈
𝑑
� +1<𝑑≤𝑎𝑎+𝑏

(𝑑,𝑎)=1
𝑑>𝑎𝑎+𝑏
(𝑑,𝑎)=1

 

                                        ∑ 𝜇(𝑑)𝑙𝑙𝑙𝑙 ∙ 𝜓 �−𝜈
𝑑
� − 𝑏

𝜑(𝑎)1<𝑑≤𝑎𝑎+𝑏
(𝑑,𝑎)=1

                                (37) 

where  𝜈  is  the  solution  of  the  congruence  𝑎𝑎 + 𝑏 ≡ 0(𝑚𝑚𝑚 𝑑), 
 0 < 𝜈 ≤ 𝑑  .       
       (36)   provides  an   explicit   formula  for  a  sum  over  the    powers   of  
primes   in  an  arithmetic  progressions   without  resorting  the  zeros  of  
Dirichlet   L- function,[24]. 
 
      For  𝑃(𝑛) = 𝑛2 + 𝑎 , 𝑎 ≠ −𝑏2 ,  𝑃(𝑛)  is   irreducible   in  𝐐[x]    and   is   an   

even   function  .  We   have  𝜌(2) = 1  and    𝜌(𝑝) = 1 + �−𝑎
𝑝
�  , 𝑝 > 2   .   Hence 

                          ∑ 𝛬(𝑛2 + 𝑎)1≤𝑛≤𝑋
𝑛2+𝑎≥1

      

                    =  𝑋 ∙ ∏ (1 − (−𝑎
𝑝

)𝑝>2
1

𝑝−1
) +  𝑅𝑃,1(𝑋)+𝑅𝑃,2(𝑋) + 𝑂(1)                  (38) 

where   
                       𝑅𝑃,2(𝑋) = −∑ 𝜇(𝑑) log 𝑑 ∙ Ψ𝑃(𝑑,𝑋) 1<𝑑≤𝑋2+𝑎                                (39) 
       As  we  mentioned  above ,  C. Hooley  had  investigated  the   sum   
∑ 𝜏(𝑛2𝑛≤𝑋 + 𝑎)  related  to   𝑃(𝑛) = 𝑛2 + 𝑎   and   proved   

                         ∑ Ψ𝑃(𝑑,𝑋) = 𝑂 �𝑋
8
9(log𝑋)3�1≤𝑑≤𝑋                                                   (40) 

 from  (40)   ,  we   can  see  some  hope  for   proving   𝑅𝑃,2(𝑋) = 𝑜(𝑋). 
       For the  primes  of  the  form     𝑛4 + 1 , [3],  and    generalized  Fermat  
primes   of  the  form  𝐹𝑛,𝑡 = 𝑛2𝑡 + 1, [4] ,  we  can  get  similar  results .   
                                                
                                        7.  Examples   for  𝒌 = 𝟐 
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        If   both   𝑛 − 1  and   𝑛 + 1   are   primes ,  then  we  call  them   twin  primes. 
Generally ,  we  can  consider  the  generalized  twin   primes ,  the  pair  of  primes  
𝑛 − 𝑎  and   𝑛 + 𝑎   (𝑎 ≥ 1) . In  this  case ,   𝑃(𝑛) = (𝑛 − 𝑎)(𝑛 + 𝑎) = 𝑛2 − 𝑎2  
is   an   even   function   and  𝑚 = 2𝑎  , 𝐻 = 𝑎 + 2  and   𝜌(𝑝) = 1 , 𝑝 ⃓ 2𝑎 ; 
𝜌(𝑝) = 2 , 𝑝 ⫮ 2𝑎 .  Hence 
 

               𝐶(𝑃1,𝑃2) = ∏ (1 − 1
𝑝

)−1𝑝⃓ 2𝑎 ∏ (1 − 2
𝑝

)(𝑝⫮ 2𝑎 1 − 1
𝑝

)−2 

                                 = 2∏ �1 − 1
(𝑝−1)2

�∏ 𝑝−1
𝑝−2𝑝 ⃓ 𝑎

𝑝>2
𝑝>2                                               (41)      

and  (26)   becomes 

� 𝛬(𝑛 − 𝑎)𝛬(𝑛 + 𝑎)
𝑎+2≤𝑛≤𝑋

(𝑛+𝑎,2𝑎)=1

 

                            =  𝑋 ∙ 𝐶(𝑃1,𝑃2)+ 𝑅𝑃,1(2𝑎,𝑋)+ 𝑅𝑃,2(2𝑎,𝑋) + 𝑂(1)                 (42)   
where 

          𝑅𝑃,1(2𝑎,𝑋) =  −1
2
𝑋∏ �1 − 1

𝑝
�𝑝⃓2𝑎 ∑ 𝜇(𝑑)2𝜔(𝑑)(log 𝑑)2

𝑑𝑑>𝑋2−𝑎2
(𝑑,2𝑎)=1

  

         𝑅𝑃,2(2𝑎,𝑋) =  1
2
∑ 𝜇(𝑑)(log𝑑)2  ∙ Ψ𝑃(𝑑, 2𝑎,𝑋) 1<𝑑≤𝑋2−𝑎2

(𝑑,2𝑎)=1
      

 
                                   8.  Application  to  Goldbach  Conjecture 
 
       Famous   Goldbach  conjecture  on  even  integers  is  quite  similar  to   the  
generalized   twin   primes   problem , but  there  are  some  differences  also.  Let  
𝑁 = 2𝑋,𝑋 ≥ 4   be  an  even  integer ,   Goldbach  guessed   𝑁   always   can     be  
expressed  as  the  sum  of  two   primes,  𝑁 = 𝑝 + 𝑞.   If  we write  𝑝 = 𝑋 − 𝑛 , 
  1 ≤ 𝑛 ≤ 𝑋 − 2 , then   𝑞 = 𝑋 + 𝑛  (  We ignore the unique  case  𝑝 = 𝑞 )  . 
Therefore,  in  this  case  we  should  consider  the polynomial    𝑃(𝑛) =
(𝑋 − 𝑛)(𝑋 + 𝑛) = 𝑋2 − 𝑛2 .   𝑃(𝑛)  has the  negative  leading  coefficient  ,  it  
does  not  satisfy  the  condition  (𝑎)  and  𝑃(0) = 𝑋2 is  unbounded . But , since  
it  has  positive  values   for  1 ≤ 𝑛 ≤ 𝑋 − 2  ,  we  can  also  apply   (18)   and  
lemma 2  to  the  integer  set 
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                        𝑬 = {𝑃(𝑛) = 𝑋2 − 𝑛2: 1 ≤ 𝑛 ≤ 𝑋 − 2, (𝑋 + 𝑛, 2𝑋) = 1} 
In this  case,  we  also  have  𝜌(𝑝) = 1 , 𝑝 ⃓ 2𝑋 ;  𝜌(𝑝) = 2 , 𝑝 ⫮ 2𝑋 . 
Therefore,  we  have 

� 𝛬(𝑋 − 𝑛)
1≤𝑛≤𝑋−2

(𝑋+𝑛,2𝑋)=1

∙ 𝛬(𝑋 + 𝑛) 

    = 1
2!
∑ ∑ 𝜇(𝑑)(log𝑑)2𝑑⃓𝑋2−𝑛21≤𝑛≤𝑋−2

(𝑋+𝑛,2𝑋)=1
         

    = 1
2
∑ 𝜇(𝑑)(log𝑑)2 ∑ 1𝑑 ⃓𝑋2−𝑛2

1≤𝑛≤𝑋−2
(𝑋+𝑛,2𝑋)=1

1<𝑑≤𝑋2−1
(𝑑,2𝑋)=1

  

    =  1
2
∑ 𝜇(𝑑)(log𝑑)2 ∙ ((𝑋 − 2) 𝜌(𝑑)

𝑑
∏ �1 − 𝜌(𝑝)

𝑝
�𝑝⃓ 2𝑋1<𝑑≤𝑋2−1

(𝑑,2𝑋)=1
       

                            +Ψ𝑃(𝑑, 2𝑋,𝑋 − 2) −  Φ𝑃(𝑑, 2𝑋))          
                              
         

     = 𝑋 ∙ 1
2
∏ �1 − 1

𝑝
�𝑝⃓ 2𝑋 ∑ 𝜇(𝑑)𝜌(𝑑)(log 𝑑)2

𝑑1<𝑑
(𝑑,2𝑋)=1

+ 𝑅𝑃(2𝑋,𝑋 − 2) + 𝑂(1)                  

        
     =  𝑋 ∙ 𝐶(𝑃1,𝑃2)+ 𝑅𝑃,1(2𝑋,𝑋 − 2)                  
            + 𝑅𝑃,2(2𝑋,𝑋 − 2) + 𝑅𝑃,3(2𝑋,𝑋 − 2) + 𝑂(1)                                            (43) 
where 

        𝑅𝑃,1(2𝑋,𝑋 − 2) =  −𝑋−2
2
∏ �1 − 1

𝑝
�𝑝⃓ 2𝑋 ∑ 𝜇(𝑑)𝜌(𝑑)(log 𝑑)2

𝑑
 𝑑>𝑋2−1

(𝑑,2𝑋)=1
           (44) 

   

        𝑅𝑃,2(2𝑋,𝑋 − 2) =  1
2
∑ 𝜇(𝑑)(log𝑑)2  ∙ Ψ𝑃(𝑑, 2𝑋,𝑋 − 2) 1<𝑑≤𝑋2−1

(𝑑,2𝑋)=1
             (45) 

        𝑅𝑃,3(2𝑋,𝑋 − 2) =  − 1
2
∑ 𝜇(𝑑)(log𝑑)2  ∙ Φ𝑃(𝑑, 2𝑋) 1<𝑑≤𝑋2−1

(𝑑,2𝑋)=1
                    (46) 

and   𝐶(𝑃1,𝑃2)  is  the  same  as  (41) shows,  we  need  only to  replace  𝑎  in  
(41)  by  𝑋 . 
        Since    Φ𝑃(𝑑, 2𝑋) =  ∑ 𝜇(𝑗)𝑗⃓ 2𝑋  Φ𝑃(𝑑𝑑)   and   𝑃(0) =  𝑋2 , but   𝑑𝑑 ⫮ 𝑋2 ,  
from   (23)   we  have   
                                      𝑅𝑃,3(2𝑋,𝑋 − 2) = 0                                                                (47) 
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      So,  the   problem  reduced  to  the  estimation  of   𝑅𝑃,2(2𝑋,𝑋 − 2)   again. 
      It  has  been  proved  that  the  asymptotic  formula   (43)   valid  for  almost  
all   𝑁 = 2𝑋 . ([19],𝑝. 444) .  
               
     
 
                                                      8. Conclusion 
 
       Up  to  now ,  though  the  numerical  computations  support  Bateman-Horn 
conjecture   strongly   in  many  cases ,  it  is  still  unproved  except  the  simplest 
cases   𝑃(𝑛) = 𝑛   and   𝑃(𝑛) = 𝑎𝑎 + 𝑏  , (𝑎, 𝑏) = 1  . Goldbach  conjecture  has 
been  checked  up  to  very  large  even  number, but  it  is  unproved   also . Now, 
from    (26)  ,  the   problem  reduced  to  the     estimation   of    the  error  term   
𝑅𝑃(𝑚,𝑋)  .  Specially,  when   𝑃(𝑛)  is  an  even  function ,  the   problem  reduced  
to  the     estimation   of    𝑅𝑃,2(𝑚,𝑋)  further . 
       As   H. Iwaniec   noticed    that   Möbius  function  𝜇(𝑛)   has  ‛  Möbius  
randomness  law ’ ([18],𝑝. 338) .  In   (29)   ,   the  factor  Ψ𝑃(𝑑,𝑚,𝑋)  is  a  sum  
of  the  values  of  𝜓(𝑛)  which  has  the  period  1  and  the  values  in  the  

interval  (−1
2

 , 1
2
 ] ,  so  we  can   naturally  expect  that  there  is  ‛ Ψ𝑃(𝑑,𝑚,𝑋)    

randomness  law ’  also  and  there  may  be   a  good  cancellation in the  sum  of 
(29)    .  Even  more,   we   can   expect   𝑅𝑃(𝑚,𝑋) = 𝑜(𝑋) .  If  this  is  the  case ,  
then  Bateman-Horn  conjecture   would  be  proved  . 
       Another  possible  approach   is  considering  the  possible  oscillation  
property    of   the  error  term  .  The  result  of  computation  shows   the error 
term  may be  oscillating   and  changing  signs  infinitely  often when  𝑋   tends to  
infinity .  As  the  difference  of  a  step  function  and  a  linear  function,  the  
error  term  is  oscillating  naturally .  If  this  is  the  case,  then the  sum   
𝑆(𝑃1,𝑃2, … ,𝑃𝑘;𝑋)   would  tends  to  infinity  with  𝑋 , since  it  is  a  
nondecreasing  function  of  𝑋 . 
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