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ABSTRACT

Foraset E of integers, for which w(n) > k,vn € E,k € Z*, where w(n) is the
number of the different prime factors of n, We give a sieve, which can separate the ones
for which w(n) = k from others.

Applying this sieve to Bateman-Horn conjecture and Goldbach conjecture , we obtain
an explicit asymptotic formula with both the main term and the error term . This provides
a possible starting point for dealing with some famous problems, Like twin primes, primes
of the form n? + a ,Goldbach conjecture and so on.
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1. Introduction

There are a lot of famous problems in number theory which puzzled people
in centuries. For example, the infiniteness of the primes of the form
n? + 1 ,the infiniteness of the twin primes, the infiniteness of the integers
n for which n,n+ 2,n+ 6 are all primes and so on.

G.H.Hardy and J.E.Littlewood [5], [21] had given a series of heuristic
asymptotic formulas for the additive problems on primes using circle method.

In 1962, P.T.Bateman and R.A.Horn [1] had given a famous heuristic
asymptotic formula concerning the distribution of primes. A lot of problems
are special cases of it. Their conjecture is as follows.

Suppose Py, P,, ..., P, € Z[x] and they satisfy the following three
conditions

(a) The leading coefficient of every P; is positive.
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(b) Every P; is irreducible in Q[x] and no two of them differ by
a constant factor.
(c¢) Thereis no prime p such that p divides the product
P(n)=P,(n)P,(n)..P,(n) for all ne Z*.
Let h; be the degree of P;(n) and Q(Py,P,, ..., P;; X) denote the number
of positive integers n (1 < n < X) such that P,(n), P,(n), ... ,P,(n) are all
primes. Bateman and Horn obtained the following heuristic asymptotic
formula by a probabilistic consideration
Q(Py, Py s Pis X) ~ by thy ™t by TP C(Py, Py, o, P ) [, (logw) e du (1)

where

C(Pr, Py P = T {1 =2 (1 =97} @

where p(p) denote the number of the solutions of the congruence
P(x) =0 (mod p) (3)
and p ranges over all primes.
An upper bound for Q(P;, P,, ..., Px; X) had been found [16],[17]

Q(Py, Py, ooy P X) < 2KK1 C(Py, Py, . ,PO{1 + 0(1)}X/(log X)¥

but, as | known, no nontrivial lower bound has been found.
By similar consideration, we can deal with the following sum

S(P1, Py s Pi; X) = Xaenex AP () APz (1)) -+ A(Pe (1)) (4)

where A(n) is the von Mangoldt function and obtain a similar heuristic
asymptotic formula

S(Pl,Pz,...,Pk;X) ~ C(Pl,Pz,...,Pk)'X (5)

S.Baier [6] proved that (1) and (5) are equivalent.
In this paper, we give a sieve, which can generate an explicit
asymptotic formula with both the main term and the error term of
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S(Py, Py, ..., Py; X) . This provides a possible starting point for dealing with
some famous problems, Like twin primes, primes of the form n? + 1 and
soon.

2. An Identity of Arithmetic Function and the Polynomial Sieve

As the analytic form of the Fundamental Theorem of Arithmetic, the
Chebyshev’s Identity plays an irreplaceable role.

Ax1=1L (6)
By differentiation of (6), we obtain Selberg’s identity

LA+A xA= L**p (7)
where u is the Mobius function.
Starting from (6) and (7), we can prove the Prime Number Theorem
by analytic or elementary methods [13],[14],[15]. Here, we choose a
slightly different way.
We denote by e; the unit of arithmetic functions and by 1 the
function for which 1(n) =1 forall n € Z* . We have

p*xl=e (8)
By differentiation of (8) and Le; =0 we obtain the well-known identity

A=—-Lp =1 (A1)
or
pxA= —Lpu 9)

By differentiation of (9) , we obtain

u x (A x A—LA)=L*u (10)
or



A2 =A% A=L1u*1+1LA (45)
By differentiation of (10) further, from (9) and (10) we obtain

p* (A3 =34 x LA+ L*A) = —L3u (11)
or
A= A« AxA=—IPu+1+34 LA — [2A (45)

Generally, by k —1 times differentiation of (9), we obtain
Tosisk-1 ("7 LT+ LA = —L¥p (12)

(12) is a recursive formula for Ly, From (9), (10), (11) and (12) we
can obtain the following identity by induction

Theorem 1. For every positive integer k, the following arithmetic
function identity holds

A% = (=DF*u + 1 + By (Ar)
where

Br = Xiytipttiptjstipt+ie=k Ak, i1, 0z, o, i, Ja,Jos s Je) = LAY 5 L1242 %
_]1+]2++]t<k,]r21 (1STSt)

.ok LAt (13)
where a(k,iq, iz, )it j1,j2, rje) are integers.

Remark. In every term of B, , the sum of the exponents of A is less
than k. We denote by w(n) the number of the different prime factors of
n. If w(n) =k, then B,(n) =0 by the pigeon hole principle . From
(4;) , we have

A*m) = (—1D* Xy nu(d)(logd)” (14)

If w(n) =k,n=p,*p,% ... p,%, p; are different primes, from (14) , we
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obtain
k!-logp, -log py - ... log px
= Yicisk (D Yigj <j<cjisk(log pj, + -+ 1log p; ¥ (15)
which is equivalent to the following identity of polynomials in k variables

k! %1% o X = Dacigke (1D Y 1ci ci<cjisk (X5, + o+ x5)F (16)

If w(n) =t >k, then both sides of (14) vanish ([15],p.47). In this
case, the equivalent polynomial identity is

0= Yicice(—1)' Vigji<jy<cjost (X, + o+ x;)K (17)

Therefore, for any set E of integers, for which w(n) > k,vn € E, acting
(Ay) on the integers of E, we can separate the ones for which w(n) =k
from others.If we consider the sum over E, from (14) we get

ZneEwm=k AN = (=1)* Xnep Xa 1n u(d)(logd)* (18)

So, (18) provides some kind of sieve. We call it polynomial sieve from
the discussion above.
Golomb [8] had obtained a result similar to (14).

3. Some lemmas

C.Hooley [12] had given a formula for quadratic polynomials in his
study on the sum Y,y 7(n? + a), where 7(n) is the number of divisors of
n. We generalize his result slightly and the proof is almost unchanged.

Lemma 1. (C.Hooley) Let P(n) be a polynomial with integral
coefficients,d €EZ* , XER" and

TP(d; X) = ZP(n)EO (mod d) 1 (19)

1<sn<X
Then we have



Tp(d,X) = XZ2 4+ W, (d, X) — p(d) (20)

where p(d) is the number of the solutions of the congruence
P(x) =0 (mod d) and

Wp(d, X) = Tpwy=o mod ) Y(=0) (21)
o<vsd
q)P(d) = ZP(V)EO (mod d) l/J(%) (22)
o<vsd

where Y(u) = %— {u} ,{u} is the fraction part of u.

Proof. Tp (d, X) = ZP(V)EO (mod d) anv (mod d) 1

o<vsd 1=n<X
= ZP(V)EO (mod d) ([%] + 1)
o<vsd
X_ —
= ZP(V)EO (mod d) ([Tv] - [71/])
o<vsd
X X— -
= Xpm=0(moaa) (3 + ¥ (Tv) ~ ()
o<vsd
d
= XE2 4w, (d, X) - p(d) a

Remark. When P(n) is an even function, the situation becomes simpler
and a lot of important problems satisfy this requirement. Let P(0) = a,
from Y(u)+ Y(—u) =0,u & Z, we have

d{a

p(d) = { il (23)

N, O

especially, ®p(d) =0 for d> a .
We can generalize the Lemma 1 slightly.

Lemma2.. Let P(x) be a polynomial with integral coefficients and
m€E€Zt ,XERY and



Tp(d,m,X) = X P(n)=0 (mod d) 1
1sn<X,(P(n),m)=1

Then we have
Tp(d, m,X) =
0 (d,m)>1

d
X%“plm(l_%)+%(d,m,)()— Pp(d, m) (d,m)=1

where
Wp(d,mX) = Xjimu() Pe(dj, X)
Pp(d,m) = Xj 1mu() ®p(dj)
Proof . It is clear that (d,m) >1 imply Tp(d,m,X)= 0. if
(d,m) =1, then
TP(d: m, X) = ZP(n)EO (mod d) Zj | (P(n),m) .u(])

1=n<X

=2 m M) Lajipaw 1

1=n<X

= % im RO (X EZ2 4+ Wp (], X) = ©p(d))
= X228 m D EP A T 1 m k() Wp (), X) = T 1 m () ()

d
=X§lem(1_%)+wp(d;m»x)_ ®p(d, m) D

Suppose Py, P,, ..., P, € Z[x] and satisfy the three conditions (a), (b), (¢)
above. The product in (2) has been proved to be convergent and the
coefficient C(Py, Py, ... ,P;) is often called Bateman-Horn constant or Hardy-
Littlewood Constant [1],[7],[8],[16]. From the condition (b), it is easy to
know that there is a positive integer m such that if (P(n),m) = 1, then
P;(n) are pairwise coprime.

K. Conrad [8] obtained a very nice result, he proved unconditionally that
the Bateman-Horn constant has another expression.

Lemma 3. (K.Conrad) Suppose Py, P,, ..., P, € Z[x] and satisfy the three
conditions (a), (b),(c) . For any positive integer k and m, the series



k
Y as1 p(d)p(d)(logd) (24)
(d,m)=1 d

converges and the equality

(—1)¥ (») (d)p(d)(log d)¥
Tnplm(l_ppp)z(ddz)l1” - d == = C(P,P,....P) (25
’m =

holds , where p(d) is the number of the solutions of the congruence
P(x)=P;(x)P,(x) ... Pr(x) = 0 (mod d).

4. Generating Bateman-Horn Conjecture

Now , Let us consider the sum (4). Suppose P;,P,,...,P, € Z[x] and
satisfy the three conditions (a), (b), (c) above and P is the product of P;'s
and a positive integer m satisfies that if (P(n),m) =1, then P;(n) are
pairwise coprime . From the condition (a) , 3H € Z*,for n > H we have
P;(n) > 1 for all i.Hence, (P(n),m)=1 and n=>H imply a)(P(n)) >k .
Then, for the set of integers

E={P(n):H<n<X, (P(n)ym)=1}
From (18), Lemma 2, Lemma3, we have
k'Y nsnsx  A(PL(n))A(Py(n)) ... A(Pr(n))

(P(n),m)=1
= (=D*Y Hensx Xa i pmyu(d)(logd)*
(P(m),m)=1
= (=D*Y 1snsx Xa i pmyu(d)(logd)* +0(1)
(P(m),m)=1
= (—1)k Y1<aspx) u(d)(log d)k ) d 1P(n) 1+ 0(1)
(d,m)=1 1=n<X,(P(n),m)=1
= (=" Ti<aspio #(d) (log ) - K2R TT, (1 - 22)
(d,m)=1

+l'pp(d,m,X) - ch(d,m)) + 0(1)
d)p(d)(log d)k
=X (=D*II, Im( _%) L<d<P(0) u(@p( ;( ogd)
(d,m)=1

+(—1)* Y1<asprxy u(d)(logd)* - Wp(d, m, X)
(dm)=1




+(—1)**1 Yica<poo u(d)(logd)* - @p(d,m) + 0(1)
(d,m)=1
=X'k! C(Pl,Pz,...,Pk)

d)p(d)(log d)k

+X - (DL, (1 _ M)Zd>P(X) u(d)p(d)(logd)

p d
(dm)=1
+(—1)* Y1casproo u(d)(log d)* - ¥p(d, m, X)
(d,m)=1
+(—D 1 Y cacpoo u(d)(log ) - @p(d,m) + 0(1)
(dm)=1
Hence, we obtain Bateman-Horn conjecture with error term.

Theorem 2. The following explicit asymptotic formula

2 Hsnsx AP (M)AP(n)) ... A(P(n))
(P(n)m)=1

=X-C(P,P,,...,P) + Rp(m,X) (26)

holds, where the error term

Rp(m,X) == Rp’l(m,X) + RP’Z(m,X) + RP’3(m,X) + 0(1) (27)
where
—)k+1 d)p(d)(log d)*
Rpa(m,X) = XS0 [T i (1= 22 3 gy UOLOLED. (28
' (d,m)=1
_1)k
Rpy(m,X) = S5 51 aepin u(d) (log d)F - Wp(d, m, X) (29)
' (dm)=1
(_1)k+1 K
Rp3 (m,X) = ol Z1<dsp(x)#(d)(1og d)* - ®p(d, m) (30)
' (d,m)=1

5. Some Remarks

First, we notice that the case m > 1 can be reduced to the case
m =1 . without losing generality, we can assume m squarefree and Let
m = p;p, ...y . From the condition (¢) , p(p;) is less than p; and there
are t; = p; — p(p;) residues (modp;) 0<a;; <a;, <--<a;, <p; which
are not the solutions of (3). Let u =[[ << t; . From the Chinese
Remainder Theorem, the systems of the linear congruences



X= a5,(modp), 1<j1 <ty

(31)

X = apj(modp,), 1<j. <t

have u solutions x = by, by, ...,b, (mod m) and n = b; (mod m) imply
(P(n),m) =1. Instead of P(n), we can consider the product

T;(n) = P(mn+b;) = P;(mn+ b;)P,(mn+b;) ..P(mn+b;),1<j< u
which satisfy (Tj(n),m) =1 for all n and P;,(mn+b;) ,1<i<k are
pairwise coprime for all n.

Example. Let’s consider the set of four primes of the form
n—-5n—1,n+1 n+5, we have m = 30. In order that the values of
these four polynomials are pairwise coprime , if and only if n satisfies one
of the following systems of linear congruences

n=0 (mod 2)
n=0 (mod 3)
n= 12 (mod 5)

Their solutions are n = +12 (mod 30) . Hence, the problem reduced to the
following two possible sets
(Pl(t) =30t —7 (Pl(t) =30t + 17
P,(t) =30t —11 P,(t) =30t + 13
ipfﬁ(t) =30t — 13 and ipfﬁ(t) =30t + 11
P,(t) =30t —17 P,(t) =30t+7
for which m=1.
Let’s consider , for example, the set on the right side. We have

{p(p) =0 p =235
p(p) =4 p>5
and
154
C(Py, Py, P3, Py) = ?64
where
6p2—4p+1
Cs = [Tpss (1 - %) ~ 0.62974
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In this case, the numerical computation shows that the left side of (26) is
quite close to the main term .

Secondly, let’s consider the errorterm .

Since m is determined by the polynomial P ,so Rp(m,X) is only
dependent on P and X in fact .

The term O0(1) in (27) s a constant , which is only dependent on
the polynomial P and can be easily determined in a single case.

From the convergency of series (24), we have Rp;(m,X) = o(X),
when X tends to infinity.

When P(n) is an even function, It's easy to estimate Rp3(m,X) . If
d>a=P(0),then ®p(d,m) =0, we have

Rp3(m, X) = 0(1<a<a(logd)*) = 0(1)

Therefore, in this case , the estimation of Rp(m,X) reduced to the

estimation of Rp,(m,X).

6. Examples for k=1
Bateman-Horn conjecture is a quite general conjecture, it has a lot

of special cases. First, we consider the case k = 1. In this case,
m=1 and

C(P) — Hp p;p(p) (32)

-1

For the simplest case P(n) =n , we have p(p) =1, C(P)=1 and

Yisnsx A(M) =X + Rp(X) (33)
where

d)logd
Rp(X) = Nrcqsx t(d)log d - {3} + X - 3 HOES (34)

(33) is another explicit formula for Chebyshev’s ¥(x) without resorting
the zeros of Riemann zeta function [24]. Rp(X) = o(X) implys Prime

1
Number Theorem and Rp(X) = O(XE(logX)Z) would imply Riemann
Hypothesis [20].
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For P(n) =an+b, 0<b<a,(a,b)=1,we have p(p)=1,if pta,
and p(p) =0, if p la, therefore

— P __@
C(P) - l_[p |ap_1 - (p(a) (35)
where @(n) is the Euler’s totient function and (26) becomes
Sienex Alan +b) = —=(aX +b) + Rp(X) (36)
where Rp(X) = X * Ya>ax+b ”(d);ogd — Y1<asax+b u(d)logd - (%) +
(da)=1 (d,a)=1
-V b
Sacasarsn (@Dlogd - () = 755 (37)

where v is the solution of the congruence at + b = 0(mod d),
o<v<d.

(36) provides an explicit formula for a sum over the powers of
primes in an arithmetic progressions without resorting the zeros of
Dirichlet L- function,[24].

For P(n) =n%*+a, a+ —b?, P(n) is irreducible in Q[x] and is an
even function . We have p(2) =1 and p(p) =1+ (_?a) , p>2 . Hence
Y 1<n<x /1(712 + a)

n2+ax=1
= X Tlps2(1 = G5 + Rpa(D+Re2(X) +0(1) (38)
where
Rp2(X) = — Xi<asxz+q #(d) logd - ¥p(d, X) (39)

As we mentioned above, C. Hooley had investigated the sum
Yn<x T(n? + a) related to P(n) =n%*+a and proved

8
S1casx (4, X) = 0 (X3(log X)?) (40)
from (40) , we can see some hope for proving Rp,(X) = o(X).
For the primes of the form n*+ 1,[3], and generalized Fermat

primes of the form F,, = n? + 1,[4], we can get similar results .

7. Examples for k =2
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If both n—1 and n+1 are primes, then we call them twin primes.
Generally, we can consider the generalized twin primes, the pair of primes
n—a and n+a (a=1).In this case, P(n) = (n—a)(n+a) =n? —a?
is an even function and m=2a ,H=a+2 and p(p)=1, p |2a;

p(p) =2, pt2a. Hence

C(P,Py) =y 12a(1 =) Tpy2a(1 = (1 =)

_ 1 p-1
= 2]lp>2 (1—m) I, a2 (41)
p>2
and (26) becomes
An—a)A(n+ a)
a+2snsX
(n+a,2a)=1
= X'C(Pl,Pz)-l" RP’l(Za,X)-I' RP‘Z(ZCL,X)-FO(l) (4‘2)
where
1 1 d)29@D (log d)?
Rp1(2a,X) = —5X Iy 24 (1 - ;) Xd>X2—qg? #D) d(og )
(d,2a)=1
1
Rp,(2a,X) = EZl<dsX2—a2 u(d)(logd)? - Wp(d, 2a,X)
(d,2a)=1

8. Application to Goldbach Conjecture

Famous Goldbach conjecture on even integers is quite similar to the
generalized twin primes problem, but there are some differences also. Let
N =2X,X =4 be an even integer, Goldbach guessed N always can be
expressed as the sum of two primes, N=p+q. If wewrite p=X—n,

1<n <X-2,then q=X+n ( Weignore the unique case p=¢q) .
Therefore, in this case we should consider the polynomial P(n) =

(X —n)(X +n) =X%2—n?. P(n) hasthe negative leading coefficient , it
does not satisfy the condition (a) and P(0) = X?is unbounded . But, since
it has positive values for 1<n <X -2, we can also apply (18) and
lemma 2 to the integer set
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E={P()=X?-n%1<n<X-2,(X+n2X) =1}
In this case, we also have p(p) =1, p 12X; p(p) =2, pt2X.
Therefore, we have

AX —n)-AX +n)

1sn=X-2
(X+n,2X)=1
1
==Y 1=nsx-2 XNqix2-n2 4(d)(logd)?

|
21 (x+n,2x)=1

1
= 521<dsxz—1 /,t(d)(logd)zz d ix2—nz 1

(d,2x)=1 1=n<X-2
(X+n,2X)=1

. (d ®)
= S cdore (@) (0gd)? - (X = 2) 22T, o (1 - 222)
(d,2x)=1 1%

+W,(d, 2X,X —2) — ®p(d, 2X))

2
=X 3Ty i2x(1-2) % 1<a HOKPEED 4 RL(2X,X —2) + 0(1)
27 P P/ (d,2x)=1 d

= X- C(Pl,Pz)‘l' Rp’l(ZX,X_ 2)

+ RP,Z(ZX,X -2)+ Rp 3 2X,X-2)+0(1) (43)
where
X-2 1 d)p(d)(log d)?
Rp1(2X,X =2) = =2y 125 (1 3) Doy HOEEEED (a4
(d,2X)=1
1
Rp, 2X,X—-2) = EZ1<dsx2—1 u(d)(log d)z “Wp(d,2X,X — 2) (45)
(d,2X)=1
1
RP,3(2X'X —2) = —§Z1<dsxz—1 ,u(d)(log d)z 'cbp(d' 2X) (46)
(d,2X)=1

and C(Py,P,) is the same as (41) shows, we need only to replace a in
(41) by X.
Since ®p(d,2X) = X 2x () Pp(dj) and P(0) = X*,but djtX?,
from (23) we have
Rps(2X,X—-2)=0 (47)
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So, the problem reduced to the estimation of Rp,(2X,X —2) again.
It has been proved that the asymptotic formula (43) valid for almost
all N =2X.([19],p.444).

8. Conclusion

Up to now, though the numerical computations support Bateman-Horn
conjecture strongly in many cases, it is still unproved except the simplest
cases P(n)=n and P(n)=an+b ,(a,b) =1 . Goldbach conjecture has
been checked up to very large even number, but it is unproved also. Now,
from (26) , the problem reduced to the estimation of the error term
Rp(m,X) . Specially, when P(n) is an even function, the problem reduced
to the estimation of Rp,(m,X) further.

As H.lwaniec noticed that Mobius function u(n) has * Mobius
randomness law’ ([18],p.338). In (29) , the factor Wp(d,m,X) is a sum
of the values of ¥ (n) which has the period 1 and the values in the

: 1 1 o
I ) P ) )
interval ( > 2] so we can naturally expect that there is *Wp(d, m, X)

randomness law’ also and there may be a good cancellation in the sum of
(29) . Even more, we can expect Rp(m,X) = o(X). If this is the case,
then Bateman-Horn conjecture would be proved .

Another possible approach is considering the possible oscillation
property of the error term . The result of computation shows the error
term may be oscillating and changing signs infinitely often when X tends to
infinity . As the difference of a step function and a linear function, the
error term is oscillating naturally . If this is the case, then the sum
S(Py, Py, ..., Py; X) would tends to infinity with X, since it is a
nondecreasing function of X .
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