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Background

Problem

Investigate the integer solutions of aX 2 − bY 4 = c.

Why are these interesting equations?
– squares in binary recurrence sequences
– quartic model of elliptic curves

c = ±1,±2,±4
Ljunggren, Cohn, Chen-V, Bennett, Walsh, Togbé, Akhtari,
Yuan,. . .

Other c?
Walsh observed X 2 − 2Y 4 = −1 and X 2 − 5Y 4 = −4 are start of
a family: X 2 −

(
22m + 1

)
Y 4 = −22m.

Together with others showed there are at most three odd solutions.



New Results (I)

Theorem

Let a, m and p be non-negative integers with a ≥ 1, p a prime,
(a, pm) = 1 and a2 + p2m not a square. Suppose
x2 −

(
a2 + p2m

)
y2 = −1 has a solution.

There are at most two coprime positive integer solutions of

X 2 −
(
a2 + p2m

)
Y 4 = −p2m.

Theorem

Let a, m and p be non-negative integers with a ≥ 1, p a prime,
(a, 2pm) = 1 and a2 + 4p2m not a square. Suppose
x2 −

(
a2 + 4p2m

)
y2 = −1 has a solution.

There are at most two coprime positive integer solutions of

X 2 −
(
a2 + 4p2m

)
Y 4 = −4p2m.

Both results are best-possible.



What is special about p2m and 4p2m?

Lemma

Let a, m and p be non-negative integers with a ≥ 1, p a prime,
gcd (a, pm) = 1 and a2 + p2m not a perfect square. Suppose
x2 −

(
a2 + p2m

)
y2 = −1 has an integer solution.

All coprime integer solutions (x , y) to the quadratic equation
x2 −

(
a2 + p2m

)
y2 = −p2m are given by

x + y
√

a2 + p2m = ±
(
±a +

√
a2 + p2m

)
α2k , k ∈ Z,

where α =
(
T1 + U1

√
a2 + p2m

)
/2 and (T1,U1) is the minimum

positive solution of the equation x2 −
(
a2 + p2m

)
y2 = −4.

Same holds with p2m replaced by 4p2m.

With b = pm or 2pm, any solution with Y > 1 has Y > b2/2.



New Results (II)

Definition

Family: all (x , y) with x + y
√
d ∈

{
±
(
±e + f

√
d
)
αk : k ∈ Z

}
,

where α is a fundamental unit of norm 1 in Z
[√

d
]

for d , e, f ∈ Z.

Condition 1

Let a and b be positive integers with (a, b) = 1 and a2 + b2 not a
square. Suppose x2 −

(
a2 + b2

)
y2 = −1 has a solution and all

coprime solutions of x2 −
(
a2 + b2

)
y2 = −b2 are in one family.

Theorem

If Condition 1 holds, then there are at most three coprime positive
integer solutions of X 2 −

(
a2 + b2

)
Y 4 = −b2.



Representation of solutions

Lemma

If Condition 1 holds and (X ,Y ) 6= (a, 1) is a coprime positive
integer solution to X 2 −

(
a2 + b2

)
Y 4 = −b2, then there are

r , s ∈ Z with gcd(r , s) = 1 and s > r > 0 such that

±X ± bi = (a + bi) (r ± si)4 . Y = r2 + s2.

x2 −
(
a2 + b2

)
y2 = −1 has an integer solution is required here.

Assume two solutions of X 2 −
(
a2 + b2

)
Y 4 = −b2, (X1,Y1),

(X2,Y2) with Y2 > Y1 > b2/2.
Put x + yi = (r1 − s1i) (r2 − s2i). Then∣∣(X1 ± bi) (x + yi)4 − (X1 ∓ bi) (x − yi)4

∣∣ = 2bY 4
1 .

Goal: show there are no non-trivial solutions.



Hypergeometric method

Put

Xn,r (z) = 2F1(−r − 1/n,−r , 1− 1/n, z), Yn,r = z rXn,r

(
z−1
)
,

where 2F1 denotes the classical hypergeometric function.

Key relationship:

z1/nYn,r (z)− Xn,r (z) = (z − 1)2r+1Rn,r (z).

Xn,r (z) ∈ Q[z ]

denominators of coefficients of Xn,r (z) grow like c1(n)c2(n)r .

|Xn,r (z)| < c3(n, r)
∣∣1 +

√
z
∣∣r for |z | ≤ 1.



Effective Irrationality Measures (I)

Lemma

Let θ ∈ C and K either Q or an imaginary quadratic field. Suppose
that for all non-negative integers r , there are pr , qr ∈ OK with
prqr+1 6= pr+1qr , |qr | < k0Q

r and |qrθ − pr | ≤ `0E−r for real
numbers k0, `0 > 0 and E ,Q > 1. Then for all p, q ∈ OK with
|q| ≥ 1/ (2`0), we have∣∣∣∣θ − p

q

∣∣∣∣ > 1

c |q|κ+1
, where c = 2k0Q(2`0E )κ and κ =

logQ

log E
.

Problem here: wasteful c .

Cause: p/q = pr/qr .



Effective Irrationality Measures (II)

Lemma

Let θ,E , k0,K.`0, pr ,Q and qr be as before. For all p, q ∈ OK, let
r0 be the smallest positive integer such that |q| < E r0/ (2`0).
(a) We have

|qθ − p| > 1

2k0Qr0+1
.

(b) When p/q 6= pr/qr , we have

|qθ − p| > 1

2k0Qr0
.

This suggests a method of proof:
Show no solutions for each value of r0.

Here we can take k0 = 0.89, `0 = 0.4b/X1,
E = 0.372

√
a2 + b2Y 2

1 /b
2 and Q = 10.74

√
a2 + b2Y 2

1 .



Proof (I)

For some ζ4 ∈ {±1,±i}, p = x + iy . q = p̄, Thue equation yields

2b√
a2 + b2 Y 2

2

=

∣∣∣∣∣X1 ± bi

X1 ∓ bi
−
(
p

q

)4
∣∣∣∣∣ > 3.7

∣∣∣∣∣
(
X1 ± bi

X1 ∓ bi

)1/4

− ζ4
p

q

∣∣∣∣∣ .
Case 1: r0 = 1 and ζ4p/q 6= p1/q1:
diophantine lemma implies Y 3

2 < 372b2Y 5
1 .

Lemma

Suppose Condition 1 holds. Let (X1,Y1) and (X2,Y2) be two
coprime solutions to X 2 −

(
a2 + b2

)
Y 4 = −b2 with Y2 > Y1 > 1.

Then

Y2 > 7.98
a2 + b2

b2
Y 3
1 .

Upper and lower bounds for Y2 yield contradiction.

Case 2: r0 = 1 and ζ4p/q = p1/q1:
similar, but we need to work a bit harder
(use some hypergeometric niceness).



Proof (II)

Case 3: r0 > 1.

Our diophantine lemma implies

Y 3
2 < 92b2 · 1420r0

(
a2 + b2

)r0 Y 4r0+5
1 .

Definition of r0 implies

Y2 > 11.25 · 0.138r0
(
a2 + b2

)r0 b2−4r0Y 4r0−1
1 .

Combining upper and lower bounds for Y2, we have

a2 + b2 < 182, 000.

That gives us an upper bound for Y1 too.

Complete proof using Pari and MAGMA.



Closing

Preprint available: https://arxiv.org/abs/1807.04116

Theorem (In progress)

If Condition 1 holds and a > (29/2)b, then there are at most two
coprime positive integer solutions of X 2 −

(
a2 + b2

)
Y 4 = −b2.

Best possible:
b a positive integer with gcd(b, 10) = 1 and a =

(
b2 − 5

)
/4.

(a, 1) and
((
b6 + 5b4 + 15b2 − 5

)
/16,

(
b2 + 1

)
/2
)

are solutions.

Merci et Thank You!


