Sharp bounds on the number of solutions of $X^2 - (a^2 + p^{2m}) Y^4 = -p^{2m}$

Paul Voutier

CNTA 2018

Problem

Investigate the integer solutions of $aX^2 - bY^4 = c$.

- Why are these interesting equations?
 - squares in binary recurrence sequences
 - quartic model of elliptic curves
- $c = \pm 1, \pm 2, \pm 4$

Ljunggren, Cohn, Chen-V, Bennett, Walsh, Togbé, Akhtari, Yuan,...

• Other c?

Walsh observed $X^2 - 2Y^4 = -1$ and $X^2 - 5Y^4 = -4$ are start of a family: $X^2 - (2^{2m} + 1) Y^4 = -2^{2m}$.

Together with others showed there are at most three odd solutions.

New Results (I)

Theorem

Let a, m and p be non-negative integers with $a \ge 1$, p a prime, $(a, p^m) = 1$ and $a^2 + p^{2m}$ not a square. Suppose $x^2 - (a^2 + p^{2m}) y^2 = -1$ has a solution.

There are at most two coprime positive integer solutions of

$$X^2 - (a^2 + p^{2m}) Y^4 = -p^{2m}.$$

Theorem

Let a, m and p be non-negative integers with $a \ge 1$, p a prime, $(a, 2p^m) = 1$ and $a^2 + 4p^{2m}$ not a square. Suppose $x^2 - (a^2 + 4p^{2m}) y^2 = -1$ has a solution. There are at most two coprime positive integer solutions of

$$X^2 - (a^2 + 4p^{2m}) Y^4 = -4p^{2m}.$$

• Both results are best-possible.

What is special about p^{2m} and $4p^{2m}$?

Lemma

Let a, m and p be non-negative integers with $a \ge 1$, p a prime, $gcd(a, p^m) = 1$ and $a^2 + p^{2m}$ not a perfect square. Suppose $x^{2} - (a^{2} + p^{2m})y^{2} = -1$ has an integer solution. All coprime integer solutions (x, y) to the quadratic equation $x^{2} - (a^{2} + p^{2m}) y^{2} = -p^{2m}$ are given by $x + y\sqrt{a^2 + p^{2m}} = \pm \left(\pm a + \sqrt{a^2 + p^{2m}}\right)\alpha^{2k}, \ k \in \mathbb{Z},$ where $\alpha = \left(T_1 + U_1\sqrt{a^2 + p^{2m}}\right)/2$ and (T_1, U_1) is the minimum positive solution of the equation $x^2 - (a^2 + p^{2m}) y^2 = -4$.

- Same holds with p^{2m} replaced by $4p^{2m}$.
- With $b = p^m$ or $2p^m$, any solution with Y > 1 has $Y > b^2/2$.

Definition

Family: all
$$(x, y)$$
 with $x + y\sqrt{d} \in \left\{ \pm \left(\pm e + f\sqrt{d} \right) \alpha^k : k \in \mathbb{Z} \right\}$,
where α is a fundamental unit of norm 1 in $\mathbb{Z} \left[\sqrt{d} \right]$ for $d, e, f \in \mathbb{Z}$.

Condition 1

Let a and b be positive integers with (a, b) = 1 and $a^2 + b^2$ not a square. Suppose $x^2 - (a^2 + b^2) y^2 = -1$ has a solution and all coprime solutions of $x^2 - (a^2 + b^2) y^2 = -b^2$ are in one family.

Theorem

If Condition 1 holds, then there are at most three coprime positive integer solutions of $X^2 - (a^2 + b^2) Y^4 = -b^2$.

Lemma

If Condition 1 holds and $(X, Y) \neq (a, 1)$ is a coprime positive integer solution to $X^2 - (a^2 + b^2) Y^4 = -b^2$, then there are $r, s \in \mathbb{Z}$ with gcd(r, s) = 1 and s > r > 0 such that

$$\pm X \pm bi = (a + bi)(r \pm si)^4$$
. $Y = r^2 + s^2$.

• $x^2 - (a^2 + b^2) y^2 = -1$ has an integer solution is required here.

• Assume two solutions of $X^2 - (a^2 + b^2) Y^4 = -b^2$, (X_1, Y_1) , (X_2, Y_2) with $Y_2 > Y_1 > b^2/2$. Put $x + yi = (r_1 - s_1i)(r_2 - s_2i)$. Then

$$|(X_1 \pm bi)(x + yi)^4 - (X_1 \mp bi)(x - yi)^4| = 2bY_1^4.$$

• Goal: show there are no non-trivial solutions.

• Put

$$X_{n,r}(z) = {}_{2}F_{1}(-r-1/n,-r,1-1/n,z), \quad Y_{n,r} = z^{r}X_{n,r}(z^{-1}),$$

where ₂F₁ denotes the classical hypergeometric function.
Key relationship:

$$z^{1/n}Y_{n,r}(z) - X_{n,r}(z) = (z-1)^{2r+1}R_{n,r}(z).$$

• $X_{n,r}(z) \in \mathbb{Q}[z]$

- denominators of coefficients of $X_{n,r}(z)$ grow like $c_1(n)c_2(n)^r$.
- $|X_{n,r}(z)| < c_3(n,r) \left| 1 + \sqrt{z} \right|^r$ for $|z| \le 1$.

Lemma

Let $\theta \in \mathbb{C}$ and \mathbb{K} either \mathbb{Q} or an imaginary quadratic field. Suppose that for all non-negative integers r, there are $p_r, q_r \in \mathcal{O}_{\mathbb{K}}$ with $p_rq_{r+1} \neq p_{r+1}q_r$, $|q_r| < k_0Q^r$ and $|q_r\theta - p_r| \leq \ell_0E^{-r}$ for real numbers $k_0, \ell_0 > 0$ and E, Q > 1. Then for all $p, q \in \mathcal{O}_{\mathbb{K}}$ with $|q| \geq 1/(2\ell_0)$, we have

$$\left| heta - rac{p}{q}
ight| > rac{1}{c|q|^{\kappa+1}}, ext{ where } c = 2k_0 Q (2\ell_0 E)^{\kappa} ext{ and } \kappa = rac{\log Q}{\log E}.$$

- Problem here: wasteful c.
- Cause: $p/q = p_r/q_r$.

Lemma

Let θ , E, k_0 , \mathbb{K} . ℓ_0 , p_r , Q and q_r be as before. For all p, $q \in \mathcal{O}_{\mathbb{K}}$, let r_0 be the smallest positive integer such that $|q| < E^{r_0}/(2\ell_0)$. (a) We have

$$|q heta-p|>rac{1}{2k_0Q^{r_0+1}}.$$

(b) When $p/q \neq p_r/q_r$, we have

$$|q\theta-p|>\frac{1}{2k_0Q^{r_0}}.$$

- This suggests a method of proof: Show no solutions for each value of r₀.
- Here we can take $k_0 = 0.89$, $\ell_0 = 0.4b/X_1$, $E = 0.372\sqrt{a^2 + b^2}Y_1^2/b^2$ and $Q = 10.74\sqrt{a^2 + b^2}Y_1^2$.

Proof (I)

• For some $\zeta_4 \in \{\pm 1, \pm i\}$, p = x + iy. $q = \bar{p}$, Thue equation yields

$$\frac{2b}{\sqrt{a^2+b^2}Y_2^2} = \left|\frac{X_1\pm bi}{X_1\mp bi} - \left(\frac{p}{q}\right)^4\right| > 3.7 \left|\left(\frac{X_1\pm bi}{X_1\mp bi}\right)^{1/4} - \zeta_4\frac{p}{q}\right|.$$

• Case 1: $r_0 = 1$ and $\zeta_4 p/q \neq p_1/q_1$: diophantine lemma implies $Y_2^3 < 372b^2Y_1^5$.

Lemma

Suppose Condition 1 holds. Let (X_1, Y_1) and (X_2, Y_2) be two coprime solutions to $X^2 - (a^2 + b^2) Y^4 = -b^2$ with $Y_2 > Y_1 > 1$. Then

$$Y_2 > 7.98 \frac{a^2 + b^2}{b^2} Y_1^3.$$

Upper and lower bounds for Y_2 yield contradiction.

 Case 2: r₀ = 1 and ζ₄p/q = p₁/q₁: similar, but we need to work a bit harder (use some hypergeometric niceness).

Proof (II)

• Case 3: $r_0 > 1$.

Our diophantine lemma implies

$$Y_2^3 < 92b^2 \cdot 1420^{r_0} \left(a^2 + b^2\right)^{r_0} Y_1^{4r_0 + 5}.$$

Definition of r_0 implies

$$Y_2 > 11.25 \cdot 0.138^{r_0} \left(a^2 + b^2\right)^{r_0} b^{2-4r_0} Y_1^{4r_0-1}$$

Combining upper and lower bounds for Y_2 , we have

$$a^2 + b^2 < 182,000.$$

That gives us an upper bound for Y_1 too.

• Complete proof using Pari and MAGMA.

• Preprint available: https://arxiv.org/abs/1807.04116

Theorem (In progress)

If Condition 1 holds and a > (29/2)b, then there are at most two coprime positive integer solutions of $X^2 - (a^2 + b^2) Y^4 = -b^2$.

• Best possible:

b a positive integer with gcd(b, 10) = 1 and $a = (b^2 - 5)/4$. (*a*, 1) and $((b^6 + 5b^4 + 15b^2 - 5)/16, (b^2 + 1)/2)$ are solutions.

