Wujie Shi (施武杰)

Chongqing University of Arts and Sciences

Suzhou University

shiwujie@outlook.com

Canadian Number Theory Association Conference

Laval University July 10, 2018

Introduction

Let G be a finite group and $Ch_{i}(G)$ be one of the following sets:

```
Ch_1(G) = |G|, that is, the order of G;

Ch_2(G) = \pi_e(G) = \{ o(g) \mid g \in G \}, that is, the set of element orders of G, (spectrum);
```

Our aim is to study the structure of G under certain arithmetical hypotheses of $Ch_i(G)$, i = 1, 2.

I am very interesting in |G| and $Ch_2(G) = \pi_e(G)$ (spectrum).

They are all the sets of numbers

Some famous results for |G|

Sylow(1832-1918) theorem

Lagrange(1736-1813) theorem

|G| is odd \Rightarrow G solvable (1906, Burnside(1852-1927) posed, 1963, W. Feit(1930-2004) and J.G. Thompson(1932-) proved, Full paper 254 pages, filled an entire issue of the Pacific Journal of Mathematics, 1963, Thompson got Fields prize for it.)

 $p^a q^b$ theorem: $|G| = p^a q^b \implies G$ solvable

Cauchy(1789-1857) theorem: $p \mid |G| \Leftrightarrow p \in \pi_e(G)$

Denote by $\mathbf{T}_{e}(G)$ (that is, $\mathbf{Ch}_{2}(G)$ in this talk) the set of all orders of elements in G.

For the set {|G|}, there are many famous and interesting results. But we do not know more information for the set $\pi_e(G)$

Obviously, $\pi_e(G)$ is a subset of the set Z^+ of positive integers, and a difficult problem is:

"Which subset of Z⁺ can constitute a set of orders of element of a group?"

If $m \in \Pi_e(G)$ and $n \mid m$, we have $n \in \Pi_e(G)$, that is, it has a closure property for division. We only know it for this set.

Some interesting results for $\pi_{\rho}(G)$

Theorem 1.1(Brandl, Shi; 1991) Let G be a finite group whose element orders are consecutive integers. That is, $\pi_e(G) = \{1, 2, 3, ..., n\}$. Then $n \le 8$. (J. of Algebra, 1991)

What about {1, ..., n-2, n-1, n} ?
Means, the largest numbers are consecutive

If we divide the set $\pi_e(G)$ into {1}, the set $\pi_e'(G)$ consisting of primes and the set $\pi_e''(G)$ consisting of composite numbers, then we have

Theorem 1.2(Deng, Shi; 1997) Let G be any finite group. Then $|\pi_e'(G)| \le |\pi_e''(G)| + 3$, and if the equality holds, then G is simple. Moreover, these simple groups are all determined only by the set $\pi_e(G)$. (J. of Algebra, 1997)

"Which subset of Z⁺ constitute a set of orders of element of a group?"

This is an interesting and more difficulty problem.

In general, what kind of quantitative sets can be the set of conjugated invariants of a finite group (degree of characters, the size of conjugacy class, the number of same order elements, ...)? These are all interesting and difficult problems.

<u>Definition</u>. For any $n \in Z^+$, set $\pi(n) := \{ p \mid p \text{ prime, } p \mid n \}$. For a finite group G, set $\pi(G) := \pi(|G|)$. From $p^a q^b$ theorem we have, if G is simple, then $|\pi(G)| \ge 3$. Using the number $|\pi(G)|$, M. Herzog got the following result.

Theorem 3.2(M. Herzog; 1968). Let G be a finite simple group. If $|\pi(G)|=3$, then G is isomorphic to one of the following groups: A_5 , $L_2(7)$, $L_2(8)$, A_6 , $L_2(17)$, $L_3(3)$, $U_3(3)$ or $U_4(2)$.

D. Gorenstein called above eight simple groups as simple K_3 -groups (i.e. $|\pi(G)|=3$).

We determined all simple K_4 -groups (i.e. $|\pi(G)|=4$) using the classification theorem, but we do not know the number of simple K_4 -groups is finite or infinite.

Theorem 3.3(Shi; 1991) Let *G* be a simple K_4 -group. Then *G* is isomorphic to one of the following groups: A_n , n = 7, 8, 9, 10; M_{11} , M_{12} , J_2 ; $L_2(q)$, q = 16, 25, 49, 81; $L_3(q)$, q = 4, 5, 7, 8, 17; $L_4(3)$; $O_5(q)$, q = 4, 5, 7, 9; $O_7(2)$, $O_8^+(2)$, $G_2(3)$; $U_3(q)$, q = 4, 5, 7, 8, 9; $U_4(3)$; $U_5(2)$; $^3D_4(2)$; $^2F_4(2)$ '; Sz(8), Sz(32); and $L_2(r)$, r being prime and satisfying the following equation:

$$r^2 - 1 = 2^a 3^b u^c, (1)$$

where $a \ge 1$, $b \ge 1$, $c \ge 1$, u prime, u > 3;

 $L_2(2^m)$ and satisfying the following equations:

$$\begin{cases}
2^{m} - 1 = u \\
2^{m} + 1 = 3t^{b}
\end{cases}$$
where $m \ge 1$, u , t primes, $t \ge 3$, $b \ge 1$;
$$(2)$$

 $L_2(3^m)$ and satisfying the following

equations:

$$\begin{cases} 3^{m} + 1 = 4t \\ 3^{m} - 1 = 2u^{c} \end{cases}$$

$$(3)$$

$$\begin{cases} 3^{m} + 1 = 4t^{b} \\ 3^{m} - 1 = 2u \end{cases}$$

where $m \ge 1$, u, t odd primes, $c \ge 1$, $b \ge 1$.

Remark 3.1. In 2001, some authors investigate these Diophantine systems and proved that equations (2), (3) and (4) have no other solution except m = 5, u = 11, c = 2 in (3) when the exponents are greater than 1.(Y. Bugeaud, Z. Cao and M. Mignotte, On simple K_4 -groups, J. Algebra, 241(2001), 658~668.)

Question 3.1. The number of simple K_4 -groups is determined by the number of solution of equations (1) ~ (4). But it is unknown whether the number of solution is finite or infinite. In other words, is the number of simple K_4 -groups finite or infinite?

(UNSOLVED PROBLEMS IN GROUP THEORY 13.65. is the number of K4-groups finite or infinite? W. J. Shi)

It was verified that the number of simple K_4 -groups is 101 if the largest prime divisor of the orders of groups is less than 10^{60} . We believe that the problem is more difficult that the number of simple K_4 -groups is finite or infinite?

Recently, Zhang and Shi (2013) proved that

$$r^2 - 1 = 2^a 3^b u^c, (1)$$

if c > 1, (1) has only the solutions (r, u, a, b, c) = (97, 7, 6, 1, 2) and (r, u, a, b, c) = (577, 17, 7, 2, 2).

In the above paper we try to point out that it is very difficult to determine the infinitude of simple K_4 -groups, and this problem goes far beyond what is known about Dickson's conjecture (L. E. Dickson, A new extension of Dirichlet's theorem on prime numbers, Messenger of mathematics 33(1904), 155-161.).

On the other hand, even if Dickson's conjecture holds, it is not obvious that the number of simple K_4 -groups is infinite.

The number of K₂-simple groups = 0 (p^aq^b theorem)

The number of K_3 -simple groups = 8 (Herzog result)

The number of K_4 -simple groups = finite or infinite?

Another Question is:

The number N of simple groups G whose order $|G| = m^k (k > 1)$.

R. Brauer, On groups whose order contains a prime to the first power, I, II, Amer. J. Math. 64(1940).

My teacher Prof. Chen proved:

If k > 2, then N = 0.

If k = 2, then G is a simple group of Lie type, $B_2(p)$

$$(| B_2(p) | = p^4(p^2-1)(p^4-1)/2)$$

where p is a prime satisfying:

p = 1 +
$$2C_{2n+1}^2 + 2^2C_{2n+1}^4 + \dots + 2^nC_{2n+1}^{2n}$$

Taking n = 1, we have p = 7 and $|B_2(7)| = 2^8 3^2 5^2 7^4$

Problem. How many *p* satisfying the above equality,

finite or infinite?

In Creseenzo, P., Adv. Math. 17(1975),25-29.

The author consider the following Diophantine equation:

$$p^{m} - 2q^{n} = \pm 1$$
, p, q primes and $m > 1$, $n > 1$

Exception 239^2 - 2.13^2 = -1, m = n = 2, if the above have solutions. We found (1982) that

$$3^{5}$$
-2.11² = 1

Ques. 1. Whether or not $p^m - 2q^n = 1$ (special Pell's equation) have other solution, except (p,q; m,n) = (3,11; 5,2)?

Related the above problem is the

$$p^2 - 2q^2 = -1$$
, p, q are primes.

Dr. Qu proved that if $p < 10^{15}$, then p = 7, 41, 63018038201, only three primes satisfy the above equality.

That is, for these p, $|B_2(p)| = m^2$. And, but the Problem is open.

Charactering all f.s.g using "two orders"

Characterizing all finite simple groups unitization using only the two sets: |G| and $\pi_e(G)$.

Now we prove the following (posed in 1987):

Theorem 4.1 Let G be a group and M a finite simple group. Then $G \cong M$ if and only if (a) $\pi_e(G) = \pi_e(M)$, and (b) |G| = |M|.

Proof. Using CFSG.

- 1. Sporadic simple groups, 1987, Shi.
- 2. PSL(n, q), 1990, Shi+Bi.
- 3. Suzuki-Ree groups, 1991, Shi+Bi.
- 4. A_n, 1992, Shi+Bi.
- 5. $G_2(q)$, $F_4(q)$, $E_6(q)$, $E_7(q)$, $E_8(q)$, $^3D_4(q)$, $^2E_6(q)$, 1994, Shi.
- 6. PSU(n,q), 2002, Cao+Shi.
- 7. ${}^{2}D_{n}(q)$, $D_{l}(q)$ (l odd), 2003, Xu+Shi
- 8. $C_n(q)$, $D_n(q)$, $D_l(q)$ (l even), 2009, Vasilev + Grechkoseeva + Mazurov

What meaning?

- 1. It say "number", "the set of number" is very important in Mathematics. Of course!

 If we have no the factorization for the integers, no Sylow theorem!
 - 2. The finite simple groups are very complex, but we may unify characterize them using the most simple concepts. i.e. all finite simple groups can determined by their "two orders".
 - 3. Our proof depend on the classification of CFSG.

Another related problem is the classification of simple C_{pp} -groups. A group is called C_{pp} -group if the centralizers of p-elements are p-subgroups. For some special p, p = $2^a3^b + 1$ or p = $2^a5^b + 1$ Using CFSG and some lemmas of Diophantine equations, we determine thus C_{pp} -groups. (see Chen and Shi, Li)

Ques. How classify all finite C_{pp} -groups?

Thank you for

Your attention!