Numerical evidence for higher order Stark-type conjectures I: Theory.

Jonathan Sands

University of Vermont and California State University, Chico

CNTA Quebec City July 9–13, 2018

Numerical evidence for higher order Stark-type conjectures I: Theory

Joint work with Kevin McGown and Daniel Vallières California State University, Chico. To appear in *Mathematics of Computation*. The aim of the conjectures is to understand the precise relationship between the arithmetic invariants of a number field K and the analytic L-functions of K.

Let: K/k be an abelian extension of number fields

G be the abelian Galois group

 S_{∞} be the set of infinite places of k

S be a finite set of places of k containing S_∞ and the primes that ramify in K.

 $v_1, v_2, \ldots v_r$ be primes in S that split completely in K. We will assume the cardinalities satisfy |S| > r + 1.

Let: K/k be an abelian extension of number fields G be the abelian Galois group

 S_{∞} be the set of infinite places of k

S be a finite set of places of k containing S_{∞} and the primes that ramify in K.

 $v_1, v_2, \ldots v_r$ be primes in S that split completely in K. We will assume the cardinalities satisfy |S| > r + 1.

Let: K/k be an abelian extension of number fields *G* be the abelian Galois group

S_∞ be the set of infinite places of k

S be a finite set of places of k containing S_{∞} and the primes that ramify in K.

 $v_1, v_2, \ldots v_r$ be primes in S that split completely in K. We will assume the cardinalities satisfy |S| > r + 1.

Let: K/k be an abelian extension of number fields G be the abelian Galois group S_{∞} be the set of infinite places of k S be a finite set of places of k containing S_{∞} and the primes that ramify in K.

 $v_1, v_2, \ldots v_r$ be primes in S that split completely in K. We will assume the cardinalities satisfy |S| > r + 1. So be the set of places of K above those in S

Let: K/k be an abelian extension of number fields

- G be the abelian Galois group
- S_∞ be the set of infinite places of k

S be a finite set of places of k containing S_{∞} and the primes that ramify in K.

 $v_1, v_2, \ldots v_r$ be primes in S that split completely in K. We will assume the cardinalities satisfy |S| > r + 1.

Let: K/k be an abelian extension of number fields

- G be the abelian Galois group
- S_∞ be the set of infinite places of k

S be a finite set of places of k containing S_{∞} and the primes that ramify in K.

 $v_1, v_2, \ldots v_r$ be primes in S that split completely in K. We will assume the cardinalities satisfy |S| > r + 1.

Also let

 $Y_S(K)$ denote the free abelian group on S_K . It is a $\mathbb{Z}[G]$ -module. $X_S(K)$ denote the $\mathbb{Z}[G]$ -submodule of elements whose coefficients sum to 0.

 $E_S(K)$ denote the group of S_K -units of K, also a $\mathbb{Z}[G]$ -module.

Also let

 $Y_S(K)$ denote the free abelian group on S_K . It is a $\mathbb{Z}[G]$ -module. $X_S(K)$ denote the $\mathbb{Z}[G]$ -submodule of elements whose coefficients sum to 0.

 $E_S(K)$ denote the group of S_K -units of K, also a $\mathbb{Z}[G]$ -module.

Definition

An Artin system of S_K -units A is a collection of S_K -units

$$\mathcal{A} = \{\varepsilon_{w} \mid w \in S_{\mathcal{K}}\} \subseteq E_{\mathcal{S}}(\mathcal{K}),$$

such that the group morphism

$$f: Y_S(K) \longrightarrow E_S(K)$$

defined by \mathbb{Z} -linearly extending $w \mapsto \varepsilon_w$ satisfies the following properties:

• f is G-equivariant,

② ker $(f) = \mathbb{Z} \cdot \alpha$ for some $\alpha \in Y_S(K)$, $\alpha \notin X_S(K)$.

Definition

An Artin system of S_K -units A is a collection of S_K -units

$$\mathcal{A} = \{\varepsilon_{w} \mid w \in S_{\mathcal{K}}\} \subseteq E_{\mathcal{S}}(\mathcal{K}),$$

such that the group morphism

$$f: Y_S(K) \longrightarrow E_S(K)$$

defined by \mathbb{Z} -linearly extending $w \mapsto \varepsilon_w$ satisfies the following properties:

I is G-equivariant,

② ker $(f) = \mathbb{Z} \cdot \alpha$ for some $\alpha \in Y_S(K)$, $\alpha \notin X_S(K)$.

Definition

An Artin system of S_K -units A is a collection of S_K -units

$$\mathcal{A} = \{\varepsilon_w \mid w \in S_K\} \subseteq E_{\mathcal{S}}(K),$$

such that the group morphism

$$f: Y_S(K) \longrightarrow E_S(K)$$

defined by \mathbb{Z} -linearly extending $w \mapsto \varepsilon_w$ satisfies the following properties:

• f is G-equivariant,

Definition

An Artin system of S_K -units A is a collection of S_K -units

$$\mathcal{A} = \{\varepsilon_{w} \mid w \in S_{\mathcal{K}}\} \subseteq E_{\mathcal{S}}(\mathcal{K}),$$

such that the group morphism

$$f: Y_S(K) \longrightarrow E_S(K)$$

defined by \mathbb{Z} -linearly extending $w \mapsto \varepsilon_w$ satisfies the following properties:

f is G-equivariant,

 $e ker(f) = \mathbb{Z} \cdot \alpha \text{ for some } \alpha \in Y_{S}(K), \ \alpha \notin X_{S}(K).$

Theorem

Artin S-units exist.

Proof.

Modify Artin's proof for S_{∞} -units, based on the familiar proof of the Dirichlet unit theorem.

Theorem

Artin S-units exist.

Proof.

Modify Artin's proof for S_{∞} -units, based on the familiar proof of the Dirichlet unit theorem.

The Arithmetic Side: Logarithmic Map

For $u \in E_S(K)$, let $|u|_w$ denote the normalized valuation of u at w and let

$$\lambda(u) = -\sum_{w \in \mathcal{S}_{\mathcal{K}}} \log |u|_w \cdot w \in \mathbb{C}Y_{\mathcal{S}}(\mathcal{K})$$

Tensoring up with \mathbb{C} , let $f_{\mathbb{C}}$ be the \mathbb{C} -linear extension of f so that

 $f_{\mathbb{C}} \circ \lambda : \mathbb{C}E_{\mathcal{S}}(K) \to \mathbb{C}E_{\mathcal{S}}(K)$

and define the regulator of $U_f = f(X_S(K))$ in $\mathbb{C}[G]$ as

$$\operatorname{Reg}(U_f) = \det_{\mathbb{C}[G]} (f_{\mathbb{C}} \circ \lambda) \in \mathbb{C}[G]$$

Each irreducible character χ on G has an associated idempotent e_{χ} , and $\mathbb{C}[G] \cong \bigoplus_{\chi} \mathbb{C}e_{\chi}$. The map above is $\mathbb{C}[G]$ -linear so that the determinant can be evaluated component-wise.

The Arithmetic Side: Logarithmic Map

For $u \in E_S(K)$, let $|u|_w$ denote the normalized valuation of u at w and let

$$\lambda(u) = -\sum_{w \in S_{\mathcal{K}}} \log |u|_w \cdot w \in \mathbb{C}Y_{\mathcal{S}}(\mathcal{K})$$

Tensoring up with \mathbb{C} , let $f_{\mathbb{C}}$ be the \mathbb{C} -linear extension of f so that

$$f_{\mathbb{C}} \circ \lambda : \mathbb{C}E_{\mathcal{S}}(K) \to \mathbb{C}E_{\mathcal{S}}(K)$$

and define the regulator of $U_f = f(X_S(K))$ in $\mathbb{C}[G]$ as

$$\operatorname{\mathsf{Reg}}(U_f) = \det_{\mathbb{C}[G]}(f_{\mathbb{C}} \circ \lambda) \in \mathbb{C}[G]$$

Each irreducible character χ on G has an associated idempotent e_{χ} , and $\mathbb{C}[G] \cong \bigoplus_{\chi} \mathbb{C}e_{\chi}$. The map above is $\mathbb{C}[G]$ -linear so that the determinant can be evaluated component-wise.

The Arithmetic Side: Logarithmic Map

For $u \in E_S(K)$, let $|u|_w$ denote the normalized valuation of u at w and let

$$\lambda(u) = -\sum_{w \in S_{\mathcal{K}}} \log |u|_w \cdot w \in \mathbb{C}Y_{\mathcal{S}}(\mathcal{K})$$

Tensoring up with \mathbb{C} , let $f_{\mathbb{C}}$ be the \mathbb{C} -linear extension of f so that

$$f_{\mathbb{C}} \circ \lambda : \mathbb{C}E_{\mathcal{S}}(K) \to \mathbb{C}E_{\mathcal{S}}(K)$$

and define the regulator of $U_f = f(X_S(K))$ in $\mathbb{C}[G]$ as

$$\operatorname{\mathsf{Reg}}(U_f) = \det_{\mathbb{C}[G]}(f_{\mathbb{C}} \circ \lambda) \in \mathbb{C}[G]$$

Each irreducible character χ on G has an associated idempotent e_{χ} , and $\mathbb{C}[G] \cong \bigoplus_{\chi} \mathbb{C}e_{\chi}$. The map above is $\mathbb{C}[G]$ -linear so that the determinant can be evaluated component-wise. Letting $\sigma_{\mathfrak{p}}$ denote the Frobenius automorphism in *G* for $\mathfrak{p} \notin S$, the abelian *L*-function for a (irreducible) character χ of *G* is

$$L_{\mathcal{S}}(s,\chi) = \prod_{\mathfrak{p} \notin \mathcal{S}} (1 - N(\mathfrak{p})^{-s} \chi(\sigma_{\mathfrak{p}}))^{-1}$$

which extends to a meromorphic function on \mathbb{C} .

If r is the number of places of S that split completely in K, then $L_S(s, \chi)$ vanishes to order at least r at s = 0. One considers the rth Maclaurin coefficient $L_S^{(r)}(0, \chi)$ and defines the Stickelberger element.

the Stickelberger element

$$heta_S^{(r)}(0) = \sum_{\chi} L_S^{(r)}(0,\chi) e_{\overline{\chi}} \in \mathbb{C}[G]$$

Letting $\sigma_{\mathfrak{p}}$ denote the Frobenius automorphism in *G* for $\mathfrak{p} \notin S$, the abelian *L*-function for a (irreducible) character χ of *G* is

$$L_{\mathcal{S}}(s,\chi) = \prod_{\mathfrak{p} \notin \mathcal{S}} (1 - N(\mathfrak{p})^{-s} \chi(\sigma_{\mathfrak{p}}))^{-1}$$

which extends to a meromorphic function on \mathbb{C} . If *r* is the number of places of *S* that split completely in *K*, then $L_S(s, \chi)$ vanishes to order at least *r* at s = 0.

One considers the *r*th Maclaurin coefficient $L_S^{(r)}(0,\chi)$ and defines the Stickelberger element

$$heta_S^{(r)}(0) = \sum_{\chi} L_S^{(r)}(0,\chi) e_{\overline{\chi}} \in \mathbb{C}[G]$$

Letting $\sigma_{\mathfrak{p}}$ denote the Frobenius automorphism in *G* for $\mathfrak{p} \notin S$, the abelian *L*-function for a (irreducible) character χ of *G* is

$$L_{\mathcal{S}}(s,\chi) = \prod_{\mathfrak{p} \notin \mathcal{S}} (1 - N(\mathfrak{p})^{-s} \chi(\sigma_{\mathfrak{p}}))^{-1}$$

which extends to a meromorphic function on \mathbb{C} . If r is the number of places of S that split completely in K, then $L_S(s,\chi)$ vanishes to order at least r at s = 0. One considers the rth Maclaurin coefficient $L_S^{(r)}(0,\chi)$ and defines the Stickelberger element

$$heta_{\mathcal{S}}^{(r)}(0) = \sum_{\chi} L_{\mathcal{S}}^{(r)}(0,\chi) e_{\overline{\chi}} \in \mathbb{C}[\mathcal{G}]$$

Analytic and Arithmetic: Stark's Rationality Conjecture

Put

$$\beta_{S}(f) = \theta_{S}^{(r)}(0) / \operatorname{Reg}(U_{f}) \in \mathbb{C}[G]$$

where the quotient can be taken componentwise in $\mathbb{C}[G] \cong \bigoplus_{\chi} \mathbb{C}e_{\chi}$. Notice that for K = k with appropriate hypotheses on S, this would relate to the *S*-regulator $R_S(K)$ and *S*-class number $h_S(K)$ in the form

$$\frac{\zeta_{\mathcal{S},\mathcal{K}}^{(r)}(0)}{\operatorname{Reg}(U_f)} = \frac{-h_{\mathcal{S}}(\mathcal{K})R_{\mathcal{S}}(\mathcal{K})}{w_{\mathcal{K}}\operatorname{Reg}(U_f)} = \frac{-h_{\mathcal{S}}(\mathcal{K})}{w_{\mathcal{K}}(E_{\mathcal{S}}(\mathcal{K}):\mu(\mathcal{K})U_f)} \in \mathbb{Q}$$

A form of Stark's rationality conjecture in our situation is

Conjecture $eta_{S}(f)\in \mathbb{Q}[G].$

Analytic and Arithmetic: Stark's Rationality Conjecture

Put

$$\beta_{\mathcal{S}}(f) = \theta_{\mathcal{S}}^{(r)}(0) / \operatorname{Reg}(U_f) \in \mathbb{C}[G]$$

where the quotient can be taken componentwise in $\mathbb{C}[G] \cong \bigoplus_{\chi} \mathbb{C}e_{\chi}$. Notice that for K = k with appropriate hypotheses on S, this would relate to the S-regulator $R_S(K)$ and S-class number $h_S(K)$ in the form

$$\frac{\zeta_{\mathcal{S},\mathcal{K}}^{(r)}(0)}{\operatorname{Reg}(U_f)} = \frac{-h_{\mathcal{S}}(\mathcal{K})R_{\mathcal{S}}(\mathcal{K})}{w_{\mathcal{K}}\operatorname{Reg}(U_f)} = \frac{-h_{\mathcal{S}}(\mathcal{K})}{w_{\mathcal{K}}(E_{\mathcal{S}}(\mathcal{K}):\mu(\mathcal{K})U_f)} \in \mathbb{Q}$$

A form of Stark's rationality conjecture in our situation is

Conjecture $eta_{\mathcal{S}}(f)\in \mathbb{Q}[G].$

Analytic and Arithmetic: Stark's Rationality Conjecture

Put

$$\beta_{\mathcal{S}}(f) = \theta_{\mathcal{S}}^{(r)}(0) / \operatorname{Reg}(U_f) \in \mathbb{C}[G]$$

where the quotient can be taken componentwise in $\mathbb{C}[G] \cong \bigoplus_{\chi} \mathbb{C}e_{\chi}$. Notice that for K = k with appropriate hypotheses on S, this would relate to the S-regulator $R_S(K)$ and S-class number $h_S(K)$ in the form

$$\frac{\zeta_{\mathcal{S},\mathcal{K}}^{(r)}(0)}{\operatorname{Reg}(U_f)} = \frac{-h_{\mathcal{S}}(\mathcal{K})R_{\mathcal{S}}(\mathcal{K})}{w_{\mathcal{K}}\operatorname{Reg}(U_f)} = \frac{-h_{\mathcal{S}}(\mathcal{K})}{w_{\mathcal{K}}(E_{\mathcal{S}}(\mathcal{K}):\mu(\mathcal{K})U_f)} \in \mathbb{Q}$$

A form of Stark's rationality conjecture in our situation is

Conjecture
$$\beta_{\mathcal{S}}(f) \in \mathbb{Q}[\mathcal{G}].$$

10/14

For each *j* from 1 to *r*, fix a choice of w_j in S_K over the split prime v_j and let $| \cdot |_j$ denote the associated normalized absolute value on *K*.

Also set $\epsilon_j = f(w_j)$, the corresponding Artin unit. One defines

$$\eta = \beta_{\mathcal{S}}(f) \cdot \epsilon_1 \wedge \epsilon_2 \wedge \cdots \wedge \epsilon_r \in \mathbb{C} \bigwedge_{\mathbb{Z}[G]}^{\prime} E_{\mathcal{S}}(K).$$

Theorem

Up to sign, the element η is independent of the choice of Artin units and is characterized as the unique preimage of $\theta_S^{(r)}(0) \in \mathbb{C}[G]$ under the isomorphism (on appropriate components) that sends $u_1 \wedge u_2 \wedge \cdots \wedge u_r$ to $\det(-\sum_{\sigma \in G} \log |u_i^{\sigma}|_j \cdot \sigma^{-1})$. Stark's rationality conjecture implies that $\eta \in \mathbb{Q} \setminus {}^r E_S(K)$.

For each *j* from 1 to *r*, fix a choice of w_j in S_K over the split prime v_j and let $| \cdot |_j$ denote the associated normalized absolute value on *K*.

Also set $\epsilon_j = f(w_j)$, the corresponding Artin unit. One defines

Theorem

Up to sign, the element η is independent of the choice of Artin units and is characterized as the unique preimage of $\theta_{S}^{(r)}(0) \in \mathbb{C}[G]$ under the isomorphism (on appropriate components) that sends $u_1 \wedge u_2 \wedge \cdots \wedge u_r$ to $\det(-\sum_{\sigma \in G} \log |u_i^{\sigma}|_j \cdot \sigma^{-1})$. Stark's rationality conjecture implies that $\eta \in \mathbb{Q} \bigwedge^r E_S(K)$.

For each *j* from 1 to *r*, fix a choice of w_j in S_K over the split prime v_j and let $| \cdot |_j$ denote the associated normalized absolute value on *K*.

Also set $\epsilon_j = f(w_j)$, the corresponding Artin unit. One defines

$$\eta = \beta_{\mathcal{S}}(f) \cdot \epsilon_1 \wedge \epsilon_2 \wedge \cdots \wedge \epsilon_r \in \mathbb{C} \bigwedge_{\mathbb{Z}[G]}^r E_{\mathcal{S}}(K).$$

Theorem

Up to sign, the element η is independent of the choice of Artin units and is characterized as the unique preimage of $\theta_{S}^{(r)}(0) \in \mathbb{C}[G]$ under the isomorphism (on appropriate components) that sends $u_1 \wedge u_2 \wedge \cdots \wedge u_r$ to $\det(-\sum_{\sigma \in G} \log |u_i^{\sigma}|_j \cdot \sigma^{-1})$. Stark's rationality conjecture implies that $\eta \in \mathbb{Q} \bigwedge^r E_S(K)$.

For each *j* from 1 to *r*, fix a choice of w_j in S_K over the split prime v_j and let $| \cdot |_j$ denote the associated normalized absolute value on *K*.

Also set $\epsilon_j = f(w_j)$, the corresponding Artin unit. One defines

$$\eta = \beta_{\mathcal{S}}(f) \cdot \epsilon_1 \wedge \epsilon_2 \wedge \cdots \wedge \epsilon_r \in \mathbb{C} \bigwedge_{\mathbb{Z}[G]}^r E_{\mathcal{S}}(K).$$

Theorem

Up to sign, the element η is independent of the choice of Artin units and is characterized as the unique preimage of $\theta_{S}^{(r)}(0) \in \mathbb{C}[G]$ under the isomorphism (on appropriate components) that sends $u_1 \wedge u_2 \wedge \cdots \wedge u_r$ to $\det(-\sum_{\sigma \in G} \log |u_i^{\sigma}|_j \cdot \sigma^{-1})$. Stark's rationality conjecture implies that $\eta \in \mathbb{Q} \bigwedge^r E_S(K)$.

(Popescu) For all choices of r - 1 $\mathbb{Z}[G]$ -module homomorphisms $\phi_i : E_S(K) \to \mathbb{Z}[G]$, the image of $w_K \eta$ under $\phi_1 \land \cdots \land \phi_{r-1}$ in $\mathbb{C}E_S(K)$ is represented by an element ϵ such that • $\epsilon \in E_S(K)$

2
$$K(\epsilon^{1/w_{K}})/k$$
 is abelian Galois.

When r = 1, this is equivalent to Stark's refined abelian rank one conjecture, and ϵ is then known as the "Stark unit". A weaker form of the conjecture may be illuminating. It states that, with one more ϕ , the image of $w_K \eta$ under $\phi_1 \wedge \cdots \wedge \phi_r$ in $\mathbb{C}[G]$ is

 $w_{\mathcal{K}}eta_{\mathcal{S}}(f)\det(\phi_i(\epsilon_j))\in\mathbb{Z}[G].$

(Popescu) For all choices of r - 1 $\mathbb{Z}[G]$ -module homomorphisms $\phi_i : E_S(K) \to \mathbb{Z}[G]$, the image of $w_K \eta$ under $\phi_1 \land \cdots \land \phi_{r-1}$ in $\mathbb{C}E_S(K)$ is represented by an element ϵ such that **1** $\epsilon \in E_S(K)$ **2** $K(\epsilon^{1/w_K})/k$ is abelian Galois.

When r = 1, this is equivalent to Stark's refined abelian rank one conjecture, and ϵ is then known as the "Stark unit".

A weaker form of the conjecture may be illuminating. It states that, with one more ϕ , the image of $w_K \eta$ under $\phi_1 \wedge \cdots \wedge \phi_r$ in $\mathbb{C}[G]$ is

 $w_{\mathcal{K}}eta_{\mathcal{S}}(f)\det(\phi_i(\epsilon_j))\in\mathbb{Z}[G].$

(Popescu) For all choices of r - 1 $\mathbb{Z}[G]$ -module homomorphisms $\phi_i : E_S(K) \to \mathbb{Z}[G]$, the image of $w_K \eta$ under $\phi_1 \land \cdots \land \phi_{r-1}$ in $\mathbb{C}E_S(K)$ is represented by an element ϵ such that • $\epsilon \in E_S(K)$

2 $K(\epsilon^{1/w_{\kappa}})/k$ is abelian Galois.

When r = 1, this is equivalent to Stark's refined abelian rank one conjecture, and ϵ is then known as the "Stark unit". A weaker form of the conjecture may be illuminating. It states that, with one more ϕ , the image of $w_K \eta$ under $\phi_1 \wedge \cdots \wedge \phi_r$ in $\mathbb{C}[G]$ is

 $w_{\mathcal{K}}\beta_{\mathcal{S}}(f)\det(\phi_i(\epsilon_j))\in\mathbb{Z}[G].$

(Burns) With $m = (E_S(K) : \mu(K) \cdot U_f)$ as above,

 $w_K m^r \beta_S(f) \in \mathbb{Z}[G]$

and furthermore, this element annihilates the S-class group $\mathcal{C}\ell_S(K)$ of K.

This conjecture and Popescu's conjecture are both consequences of the more general Leading Term Conjecture of Burns, which Burns, Flach and Greither have proved for K abelian over \mathbb{Q} , and Johnston and Nickel have proved when K/\mathbb{Q} is an S_3 -extension, assuming Leopoldt's conjecture.

(Burns) With $m = (E_S(K) : \mu(K) \cdot U_f)$ as above,

 $w_K m^r \beta_S(f) \in \mathbb{Z}[G]$

and furthermore, this element annihilates the S-class group $\mathcal{C}\ell_{\mathcal{S}}(K)$ of K.

This conjecture and Popescu's conjecture are both consequences of the more general Leading Term Conjecture of Burns, which Burns, Flach and Greither have proved for K abelian over \mathbb{Q} , and Johnston and Nickel have proved when K/\mathbb{Q} is an S_3 -extension, assuming Leopoldt's conjecture.

Daniel Vallieres will present our computational results.

Thank you

Questions??

A.

14/14

э

Daniel Vallieres will present our computational results.

Thank you

Questions??

< E