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Numerical evidence for higher order Stark-type conjectures

The aim of the conjectures is to understand the precise relationship
between the arithmetic invariants of a number field K and the
analytic L-functions of K .
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First: The Arithmetic Side: Number Fields

Let: K/k be an abelian extension of number fields
G be the abelian Galois group
S∞ be the set of infinite places of k
S be a finite set of places of k containing S∞ and the primes that
ramify in K .
v1, v2, . . . vr be primes in S that split completely in K . We will
assume the cardinalities satisfy |S | > r + 1.
SK be the set of places of K above those in S .
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The Arithmetic Side: Z[G ]-modules

Also let
YS(K ) denote the free abelian group on SK . It is a Z[G ]-module.
XS(K ) denote the Z[G ]-submodule of elements whose coefficients
sum to 0.
ES(K ) denote the group of SK -units of K , also a Z[G ]-module.
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The Arithmetic Side: Artin S-units

Definition

An Artin system of SK -units A is a collection of SK -units

A = {εw |w ∈ SK} ⊆ ES(K ),

such that the group morphism

f : YS(K ) −→ ES(K )

defined by Z-linearly extending w 7→ εw satisfies the following
properties:

1 f is G-equivariant,

2 ker(f ) = Z · α for some α ∈ YS(K ), α /∈ XS(K ).

Consequently Uf = f (XS(K )) is of finite index in ES(K ).
We set m = (ES(K ) : µ(K ) · Uf ), where µ(K ) denotes the roots of
unity in K .
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The Arithmetic Side: Artin S-units

Theorem

Artin S-units exist.

Proof.

Modify Artin’s proof for S∞-units, based on the familiar proof of
the Dirichlet unit theorem.
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The Arithmetic Side: Logarithmic Map

For u ∈ ES(K ), let |u|w denote the normalized valuation of u at w
and let

λ(u) = −
∑

w∈SK

log |u|w · w ∈ CYS(K )

Tensoring up with C, let fC be the C-linear extension of f so that

fC ◦ λ : CES(K ) → CES(K )

and define the regulator of Uf = f (XS(K )) in C[G ] as

Reg(Uf ) = det
C[G ]

(fC ◦ λ) ∈ C[G ]

Each irreducible character χ on G has an associated idempotent
eχ, and C[G ] ∼= ⊕χCeχ.
The map above is C[G ]-linear so that the determinant can be
evaluated component-wise.
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The Analytic Side: L-functions

Letting σp denote the Frobenius automorphism in G for p /∈ S , the
abelian L-function for a (irreducible) character χ of G is

LS(s, χ) =
∏
p/∈S

(1− N(p)−sχ(σp))
−1

which extends to a meromorphic function on C.
If r is the number of places of S that split completely in K , then
LS(s, χ) vanishes to order at least r at s = 0.

One considers the rth Maclaurin coefficient L
(r)
S (0, χ) and defines

the Stickelberger element

θ
(r)
S (0) =

∑
χ

L
(r)
S (0, χ)eχ ∈ C[G ]
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Analytic and Arithmetic: Stark’s Rationality Conjecture

Put
βS(f ) = θ

(r)
S (0)/ Reg(Uf ) ∈ C[G ]

where the quotient can be taken componentwise in C[G ] ∼= ⊕χCeχ.
Notice that for K = k with appropriate hypotheses on S , this
would relate to the S-regulator RS(K ) and S-class number hS(K )
in the form

ζ
(r)
S ,K (0)

Reg(Uf )
=
−hS(K )RS(K )

wK Reg(Uf )
=

−hS(K )

wK (ES(K ) : µ(K )Uf )
∈ Q

A form of Stark’s rationality conjecture in our situation is

Conjecture

βS(f ) ∈ Q[G ].
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Analytic and Arithmetic: The L-function evaluator η

For each j from 1 to r , fix a choice of wj in SK over the split prime
vj and let | |j denote the associated normalized absolute value on
K .
Also set εj = f (wj), the corresponding Artin unit. One defines

η = βS(f ) · ε1 ∧ ε2 ∧ · · · ∧ εr ∈ C
r∧

Z[G ]

ES(K ).

Theorem

Up to sign, the element η is independent of the choice of Artin

units and is characterized as the unique preimage of θ
(r)
S (0) ∈ C[G ]

under the isomorphism (on appropriate components) that sends
u1 ∧ u2 ∧ · · · ∧ ur to det(−

∑
σ∈G log |uσ

i |j · σ−1).
Stark’s rationality conjecture implies that η ∈ Q

∧r ES(K ).
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Analytic and Arithmetic: Popescu’s Integrality Conjecture

Conjecture

(Popescu) For all choices of r − 1 Z[G ]-module homomorphisms
φi : ES(K ) → Z[G ], the image of wKη under φ1 ∧ · · · ∧ φr−1 in
CES(K ) is represented by an element ε such that

1 ε ∈ ES(K )

2 K (ε1/wK )/k is abelian Galois.

When r = 1, this is equivalent to Stark’s refined abelian rank one
conjecture, and ε is then known as the “Stark unit”.
A weaker form of the conjecture may be illuminating. It states
that, with one more φ, the image of wKη under φ1 ∧ · · · ∧ φr in
C[G ] is

wKβS(f ) det(φi (εj)) ∈ Z[G ].
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Analytic and Arithmetic: Burns’ Annihilation Conjecture

Conjecture

(Burns) With m = (ES(K ) : µ(K ) · Uf ) as above,

wKmrβS(f ) ∈ Z[G ]

and furthermore, this element annihilates the S-class group
C`S(K ) of K.

This conjecture and Popescu’s conjecture are both consequences of
the more general Leading Term Conjecture of Burns, which Burns,
Flach and Greither have proved for K abelian over Q, and
Johnston and Nickel have proved when K/Q is an S3-extension,
assuming Leopoldt’s conjecture.
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The end

Daniel Vallieres will present our computational results.

Thank you

Questions??
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