Isomorphism classes of abelian varieties over finite fields

Marseglia Stefano

Stockholm University

CNTA XV - July 12, 2018

(B)

CNTA XV - July 12, 2018

3

1/14

Marseglia Stefano

• Goal: compute isomorphism classes of (polarized) abelian varieties over a finite field.

イロト 不得下 イヨト イヨト 二日

- Goal: compute isomorphism classes of (polarized) abelian varieties over a finite field.
- in dimension g > 1 is not easy to produce equations.

イロト 不得下 イヨト イヨト 二日

• Goal: compute isomorphism classes of (polarized) abelian varieties over a finite field.

- 4 周 ト 4 ヨ ト 4 ヨ ト - ヨ

2/14

CNTA XV - July 12, 2018

- in dimension g > 1 is not easy to produce equations.
- for g > 3 it is not enough to consider Jacobians.

- Goal: compute isomorphism classes of (polarized) abelian varieties over a finite field.
- in dimension g > 1 is not easy to produce equations.
- for g > 3 it is not enough to consider Jacobians.
- over \mathbb{C} :

$$\{\text{abelian varieties }/\mathbb{C}\} \longleftrightarrow \begin{cases} \mathbb{C}^g/L \text{ with } L \simeq \mathbb{Z}^{2g} \\ + \text{ Riemann form} \end{cases} \}.$$

イロト 不得下 イヨト イヨト 二日

- Goal: compute isomorphism classes of (polarized) abelian varieties over a finite field.
- in dimension g > 1 is not easy to produce equations.
- for g > 3 it is not enough to consider Jacobians.

• over \mathbb{C} :

$$\{ \text{abelian varieties } / \mathbb{C} \} \longleftrightarrow \begin{cases} \mathbb{C}^g / L \text{ with } L \simeq \mathbb{Z}^{2g} \\ + \text{ Riemann form} \end{cases} \}.$$

• in positive characteristic we don't have such equivalence.

CNTA XV - July 12, 2018 2 / 14

• • = • • = • =

Theorem (Deligne '69)

Let $q = p^r$, with p a prime. There is an equivalence of categories:

 $\{ Ordinary \ abelian \ varieties \ over \mathbb{F}_q \}$ A

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CNTA XV - July 12, 2018

3/14

Marseglia Stefano

Theorem (Deligne '69)

Let $q = p^r$, with p a prime. There is an equivalence of categories:

$$\{ \begin{array}{ll} \textit{Ordinary abelian varieties over } \mathbb{F}_q \} & A \\ & \uparrow & \downarrow \\ \\ pairs (T,F), where T \simeq_{\mathbb{Z}} \mathbb{Z}^{2g} \text{ and } T \xrightarrow{F} T \text{ s.t.} \\ - F \otimes \mathbb{Q} \text{ is semisimple} \\ - the roots of char_{F \otimes \mathbb{Q}}(x) \text{ have abs. value } \sqrt{q} \\ - \text{ half of them are } p\text{-adic units} \\ - \exists V : T \rightarrow T \text{ such that } FV = VF = q \end{array} \} (T(A), F(A))$$

Theorem (Deligne '69)

Let $q = p^r$, with p a prime. There is an equivalence of categories:

$$\{ \begin{array}{ll} \textit{Ordinary abelian varieties over } \mathbb{F}_q \} & A \\ & \uparrow & \downarrow \\ \\ pairs (T,F), where \ T \simeq_{\mathbb{Z}} \mathbb{Z}^{2g} \ and \ T \xrightarrow{F} T \ s.t. \\ - F \otimes \mathbb{Q} \ is \ semisimple \\ - \ the \ roots \ of \ char_{F \otimes \mathbb{Q}}(x) \ have \ abs. \ value \ \sqrt{q} \\ - \ half \ of \ them \ are \ p-adic \ units \\ - \exists V : T \rightarrow T \ such \ that \ FV = VF = q \end{array} \right \} \ (T(A), F(A))$$

Remark

• If dim
$$(A) = g$$
 then Rank $(T(A)) = 2g$;

• Frob(A) \rightsquigarrow F(A).

3

Deligne's equivalence: square-free case

Fix a ordinary square-free characteristic q-Weil polynomial h.

 \rightsquigarrow an isogeny class \mathscr{C}_h (by Honda-Tate).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

4 / 14

CNTA XV - July 12, 2018

Deligne's equivalence: square-free case

Fix a ordinary square-free characteristic q-Weil polynomial h.

 \rightsquigarrow an isogeny class \mathscr{C}_h (by Honda-Tate).

Put

 $K := \mathbb{Q}[x]/(h)$ and $F := x \mod h$.

Deligne's equivalence: square-free case

Fix a ordinary square-free characteristic q-Weil polynomial h.

```
\rightsquigarrow an isogeny class \mathscr{C}_h (by Honda-Tate).
```

Put

$$K := \mathbb{Q}[x]/(h)$$
 and $F := x \mod h$.

Deligne's equivalence induces:

Theorem (M.)

 $\{ \text{Ordinary abelian varieties over } \mathbb{F}_q \text{ in } \mathcal{C}_h \}_{\simeq}$ $fractional ideals of \mathbb{Z}[F, q/F] \subset K \}_{\simeq} =: \text{ICM}(\mathbb{Z}[F, q/F])$

ideal class monoid

イロト 不得 トイヨト イヨト 二日

Let R be an order in a finite étale \mathbb{Q} -algebra K.

Let R be an order in a finite étale \mathbb{Q} -algebra K.

• Recall: for fractional *R*-ideals *I* and *J*

$$I \simeq_R J \iff \exists x \in K^{\times} \text{ s.t. } xI = J$$

CNTA XV - July 12, 2018 5 / 14

イロト イ団ト イヨト イヨト 二日

Let R be an order in a finite étale \mathbb{Q} -algebra K.

• Recall: for fractional *R*-ideals *I* and *J*

$$I \simeq_R J \iff \exists x \in K^{\times} \text{ s.t. } xI = J$$

CNTA XV - July 12, 2018

5/14

• Define the ideal class monoid of
$$R$$
 as

$$ICM(R) := \frac{\{fractional \ R-ideals\}}{\simeq_R}$$

Let *R* be an order in a finite étale Q-algebra *K*. • Recall: for fractional *R*-ideals *I* and *J*

$$I \simeq_R J \iff \exists x \in K^{\times} \text{ s.t. } xI = J$$

• Define the ideal class monoid of
$$R$$
 as
ICM $(R) := \frac{\{\text{fractional } R \text{-ideals}\}_{\cong R}}{}$

We have

 $ICM(R) \supseteq Pic(R)$ with equality iff $R = \mathcal{O}_K$

CNTA XV - July 12, 2018 5 / 14

Let *R* be an order in a finite étale Q-algebra *K*. • Recall: for fractional *R*-ideals *I* and *J*

$$I \simeq_R J \iff \exists x \in K^{\times} \text{ s.t. } xI = J$$

• Define the ideal class monoid of
$$R$$
 as
ICM $(R) := \frac{\{\text{fractional } R \text{-ideals}\}}{\simeq_R}$

We have

 $ICM(R) \supseteq Pic(R)$ with equality iff $R = \mathcal{O}_K$

…and actually

$$\mathsf{ICM}(R) \supseteq \bigsqcup_{\substack{R \subseteq S \subseteq \mathscr{O}_K \\ \text{over-orders}}} \mathsf{Pic}(S)$$

with equality iff R is Bass

simplify the problem

Study the isomorphism problem locally: (Dade, Taussky, Zassenhaus '62)

CNTA XV - July 12, 2018 6 / 14

イロト 不得 トイヨト イヨト 二日

 $I_{\mathfrak{p}} \simeq_{R_{\mathfrak{p}}} J_{\mathfrak{p}}$ for every $\mathfrak{p} \in \mathsf{mSpec}(R)$

イロト 不得 トイヨト イヨト 二日

6/14

CNTA XV - July 12, 2018

• Let $\mathcal{W}(R)$ be the set of weak eq. classes...

CNTA XV - July 12, 2018 6 / 14

Let W(R) be the set of weak eq. classes...
 ...whose representatives can be found in

$$\{ sub-R-modules of \mathcal{O}_{\mathcal{K}_{fR}} \}$$
 finite! and most of the time not-too-big ...

Marseglia Stefano

Partition w.r.t. the multiplicator ring:

$$\mathcal{W}(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_{K}} \overline{\mathcal{W}}(S)$$
$$\mathsf{ICM}(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_{K}} \overline{\mathsf{ICM}}(S)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partition w.r.t. the multiplicator ring:

 $\mathcal{W}(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_{K}} \overline{\mathcal{W}}(S)$ $\mathsf{ICM}(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_{K}} \overline{\mathsf{ICM}}(S)$

the "bar" means "only classes with multiplicator ring S"

Marseglia Stefano

CNTA XV - July 12, 2018 7 / 14

Partition w.r.t. the multiplicator ring:

$$\mathscr{W}(R) = \bigsqcup_{R \subseteq S \subseteq \mathscr{O}_K} \overline{\mathscr{W}}(S)$$

$$\mathsf{ICM}(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} \overline{\mathsf{ICM}}(S)$$

the "bar" means "only classes with multiplicator ring S"

• • = • • = • =

7/14

CNTA XV - July 12, 2018

Theorem (M.)

For every over-order S of R, Pic(S) acts freely on ICM(S) and

 $\overline{\mathcal{W}}(S) = \overline{\mathrm{ICM}(S)} / \mathrm{Pic}(S)$

Marseglia Stefano

Partition w.r.t. the multiplicator ring:

$$\mathscr{W}(R) = \bigsqcup_{R \subseteq S \subseteq \mathscr{O}_K} \overline{\mathscr{W}}(S)$$

$$\mathsf{ICM}(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} \overline{\mathsf{ICM}}(S)$$

the "bar" means "only classes with multiplicator ring S"

Theorem (M.)

For every over-order S of R, Pic(S) acts freely on ICM(S) and

 $\overline{\mathcal{W}}(S) = \overline{\mathsf{ICM}(S)} / \mathsf{Pic}(S)$

Repeat for every $R \subseteq S \subseteq \mathcal{O}_K$:

 \rightsquigarrow ICM(*R*).

イロト イポト イヨト イヨト 二日

Howe ('95) defined a notion of **dual** module and of **polarization** in the category of Deligne modules.

Theorem (M.)

If $A \leftrightarrow I$, then:

Howe ('95) defined a notion of **dual** module and of **polarization** in the category of Deligne modules.

Theorem (M.) If $A \leftrightarrow I$, then: • $A^{\vee} \leftrightarrow \overline{I}^{t}$.

Howe ('95) defined a notion of **dual** module and of **polarization** in the category of Deligne modules.

Theorem (M.)

- If $A \leftrightarrow I$, then:
 - $A^{\vee} \leftrightarrow \overline{I}^t$.
 - a polarization μ of A corresponds to a $\lambda \in K^{\times}$ such that - $\lambda I \subseteq \overline{I}^{t}$ (isogeny); - λ is totally imaginary ($\overline{\lambda} = -\lambda$); - λ is Φ -positive, where Φ is a specific CM-type of K. Also: deg $\mu = [\overline{I}^{t} : \lambda I]$.

Howe ('95) defined a notion of **dual** module and of **polarization** in the category of Deligne modules.

Theorem (M.)

- If $A \leftrightarrow I$, then:
 - $A^{\vee} \leftrightarrow \overline{I}^t$.
 - a polarization μ of A corresponds to a $\lambda \in K^{\times}$ such that - $\lambda I \subseteq \overline{I}^{t}$ (isogeny); - λ is totally imaginary $(\overline{\lambda} = -\lambda)$; - λ is Φ -positive, where Φ is a specific CM-type of K. Also: deg $\mu = [\overline{I}^{t} : \lambda I]$. • if $(A, \mu) \leftrightarrow (I, \lambda)$ and S = (I : I) then $\begin{cases} non-isomorphic \\ polarizations of A \end{cases} \longleftrightarrow \frac{\{totally \ positive \ u \in S^{\times}\}}{\{v\overline{v}: v \in S^{\times}\}}.$

Howe ('95) defined a notion of **dual** module and of **polarization** in the category of Deligne modules.

Theorem (M.)

- If $A \leftrightarrow I$, then:
 - $A^{\vee} \leftrightarrow \overline{I}^t$.
 - a polarization μ of A corresponds to a λ∈ K[×] such that
 λI ⊆ Ī^t (isogeny);
 λ is totally imaginary (λ̄ = -λ);
 λ is Φ-positive, where Φ is a specific CM-type of K. Also: deg μ = [Ī^t : λI].
 if (A,μ) ↔ (I,λ) and S = (I : I) then
 (non-isomorphic) {totally positive μ∈ S

$$\left\{ \begin{array}{l} \textit{non-isomorphic} \\ \textit{polarizations of } A \end{array} \right\} \longleftrightarrow \frac{\{\textit{totally positive } u \in S^{\times}\}}{\{v\overline{v} : v \in S^{\times}\}}$$

• and
$$\operatorname{Aut}(A, \mu) = \{ \text{torsion units of } S \}.$$

- Let $h(x) = x^8 5x^7 + 13x^6 25x^5 + 44x^4 75x^3 + 117x^2 135x + 81$.
- → isogeny class of an simple ordinary abelian varieties over F₃ of dimension 4.
- Let F be a root of h(x) and put $R := \mathbb{Z}[F,3/F] \subset \mathbb{Q}(F)$.
- 8 over-orders of *R*: two of them are not Gorenstein.
- $\# ICM(R) = 18 \rightsquigarrow 18$ isom. classes of AV in the isogeny class.

イロト 不得下 イヨト イヨト 二日

CNTA XV - July 12, 2018

9/14

- 5 are not invertible in their multiplicator ring.
- 8 classes admit principal polarizations.
- 10 isomorphism classes of princ. polarized AV.

Example

Concretely:

$$\begin{split} &I_1 = 2645633792595191\mathbb{Z} \oplus (F + 836920075614551)\mathbb{Z} \oplus (F^2 + 1474295643839839)\mathbb{Z} \oplus \\ &\oplus (F^3 + 1372829830503387)\mathbb{Z} \oplus (F^4 + 1072904687510)\mathbb{Z} \oplus \\ &\oplus \frac{1}{3}(F^5 + F^4 + F^3 + 2F^2 + 2F + 6704806986143610)\mathbb{Z} \oplus \\ &\oplus \frac{1}{9}(F^6 + F^5 + F^4 + 8F^3 + 2F^2 + 2991665243621169)\mathbb{Z} \oplus \\ &\oplus \frac{1}{27}(F^7 + F^6 + F^5 + 17F^4 + 20F^3 + 9F^2 + 68015312518722201)\mathbb{Z} \end{split}$$

principal polarizations:

$$\begin{aligned} x_{1,1} &= \frac{1}{27} \left(-121922F^7 + 588604F^6 - 1422437F^5 + \\ &+ 1464239F^4 + 1196576F^3 - 7570722F^2 + 15316479F - 12821193 \right) \\ x_{1,2} &= \frac{1}{27} \left(3015467F^7 - 17689816F^6 + 35965592F^5 - \\ &- 64660346F^4 + 121230619F^3 - 191117052F^2 + 315021546F - 300025458 \right) \\ \text{End}(I_1) &= R \\ \# \text{Aut}(I_1, x_{1,1}) &= \# \text{Aut}(I_1, x_{1,2}) = 2 \end{aligned}$$

Example

$$\begin{split} I_7 =& 2\mathbb{Z} \oplus (F+1)\mathbb{Z} \oplus (F^2+1)\mathbb{Z} \oplus (F^3+1)\mathbb{Z} \oplus (F^4+1)\mathbb{Z} \oplus \frac{1}{3}(F^5+F^4+F^3+2F^2+2F+3)\mathbb{Z} \oplus \\ & \oplus \frac{1}{36}(F^6+F^5+10F^4+26F^3+2F^2+27F+45)\mathbb{Z} \oplus \\ & \oplus \frac{1}{216}(F^7+4F^6+49F^5+200F^4+116F^3+105F^2+198F+351)\mathbb{Z} \end{split}$$

principal polarization:

$$\begin{aligned} x_{7,1} &= \frac{1}{54} (20F^7 - 43F^6 + 155F^5 - 308F^4 + 580F^3 - 1116F^2 + 2205F - 1809) \\ &\text{End}(I_7) = \mathbb{Z} \oplus F\mathbb{Z} \oplus F^2 \mathbb{Z} \oplus F^3 \mathbb{Z} \oplus F^4 \mathbb{Z} \oplus \frac{1}{3} (F^5 + F^4 + F^3 + 2F^2 + 2F) \mathbb{Z} \oplus \\ &\oplus \frac{1}{18} (F^6 + F^5 + 10F^4 + 8F^3 + 2F^2 + 9F + 9) \mathbb{Z} \oplus \\ &\oplus \frac{1}{108} (F^7 + 4F^6 + 13F^5 + 56F^4 + 80F^3 + 33F^2 + 18F + 27) \mathbb{Z} \\ &\# \operatorname{Aut}(I_7, x_{7,1}) = 2 \end{aligned}$$

 I_1 is invertible in R, but I_7 is not invertible in End (I_7) .

Marseglia Stefano

	isogeny cl.	isom.cl.	isom.cl. no p.pol.	isom.cl. w/p.pol.	isom.w/ End = \mathcal{O}_K	isom.cl. no p.pol. End = \mathcal{O}_K
$\mathbb{F}_2, g = 2$	14/34	21	7	15	15	3
$\mathbb{F}_3, g=2$	36/62	76	23	59	43	6
$\mathbb{F}_5, g=2$	94/128	457	207	286	159	34
$\mathbb{F}_7, g=2$	168/207	1324	638	795	387	88
$\mathbb{F}_{11}, g = 2$	352/400	4925	2675	2797	1476	459
$\mathbb{F}_2, g = 3$	82/210	226	102	142	112	16
$\mathbb{F}_3, g = 3$	366/670	2508	1287	1492	874	187
$\mathbb{F}_5, g = 3$	439/2994	30867	24693	7013	836	206
$\mathbb{F}_7, g = 3$	267/7968	26506	21557	5674	721	180
$F_{11}, g = 3$	188/30530	18513	14291	4830	614	150

black = all ordinary squarefree isogeny classes have been computed red = work in progress

• Using Centeleghe-Stix '15 we can compute the isomorphism classes in \mathscr{C}_h over \mathbb{F}_p where *h* is square-free and without real roots.

 Using Centeleghe-Stix '15 we can compute the isomorphism classes in *C_h* over *F_p* where *h* is square-free and without real roots. much larger subcategory!!! ... but no polarizations in this case.

13/14

CNTA XV - July 12, 2018

- Using Centeleghe-Stix '15 we can compute the isomorphism classes in *C_h* over *F_p* where *h* is square-free and without real roots. much larger subcategory!!! ... but no polarizations in this case.
- we can also deal with the case \mathcal{C}_{h^d} (with *h* square-free) when $\mathbb{Z}[F, q/F]$ is Bass (soon on arXiv).

(日本) (日本) (日本) 日

 Using Centeleghe-Stix '15 we can compute the isomorphism classes in *C_h* over *F_p* where *h* is square-free and without real roots. much larger subcategory!!! ... but no polarizations in this case.

CNTA XV - July 12, 2018

13/14

- we can also deal with the case \mathcal{C}_{h^d} (with *h* square-free) when $\mathbb{Z}[F, q/F]$ is Bass (soon on arXiv).
- base field extensions (ordinary case).

- Using Centeleghe-Stix '15 we can compute the isomorphism classes in *C_h* over *F_p* where *h* is square-free and without real roots. much larger subcategory!!! ... but no polarizations in this case.
- we can also deal with the case \mathcal{C}_{h^d} (with *h* square-free) when $\mathbb{Z}[F, q/F]$ is Bass (soon on arXiv).
- base field extensions (ordinary case).
- period matrices (ordinary case) of the canonical lift.

Thank you!

Marseglia Stefano

CNTA XV - July 12, 2018 14 / 14