
Automorphism groups of K3 surfaces over
nonclosed fields

Adam Logan (TIMC and Carleton University)

joint with Martin Bright and Ronald van Luijk

(University of Leiden)

CNTA XV, July 12, 2018



Table of Contents

Arithmetic of K3 surfaces

Automorphisms of K3 surfaces

The reflection group

Examples



A standard conjecture

A K3 surface is a surface S with KS and π1(S) both trivial.
Examples: a smooth quartic in P3, the smooth intersection of three
quadrics in P5, etc. The following statement is generally believed:

Conjecture

Let S be a K3 surface over a number field K . Then S(K ) is either
empty or Zariski dense.

S(K ) can often be proved to be empty by showing that S(Kp) is
empty, where Kp is the completion of K at some place. The
Brauer obstruction can also be used (and it is conjectured that if
S(K ) is empty, one of these is responsible).



Proving density

The easiest way to prove that S(K ) is Zariski dense is to show that
S has infinitely many rational curves over K .

Suppose that S has an elliptic fibration π : S → P1 of positive
rank. Then there are infinitely many sections.

If S contains a single rational curve C , we can try to show that the
AutS-orbit of C is infinite.

Since AutS acts on Pic S with finite kernel, this can be reduced to
linear algebra.



Table of Contents

Arithmetic of K3 surfaces

Automorphisms of K3 surfaces

The reflection group

Examples



Our goal

Let S be a K3 surface over a field k , such as Q.

We would like to describe AutS in terms of AutS/k̄ and the
embedding of PicS/k into PicS/k̄.

(At least theoretically: the description of AutS/k̄ is not always
easy to work with.)



The automorphism group over k̄

Let S be a K3 surface over an algebraically closed field and let Λ
be its Picard lattice. Then AutS acts on Λ with finite kernel.

Let c ∈ Λ be such that (c , c) = −2. Then there is a reflection
ρc : x → x + (x , c)c ∈ O(Λ). Let the group generated by these be
W (Λ).

The map AutS → O(Λ)/W (Λ) has finite kernel and cokernel
(Shafarevich, Piatetski-Shapiro).



Invariants

Let S be a K3 surface over a field k , and let S̄ = S ⊗k k̄. Then
Gal(k) acts on Pic S̄ and so on W (Pic S̄) by permuting the
generators. It also acts on Aut S̄ by its action on the coefficients
of polynomials defining automorphisms and on Aut(Pic S̄) by
conjugation.

Now, Aut(Pic S̄)Gal(k) acts on (Pic S̄)Gal(k). Therefore a subgroup
RS of finite index in W (Pic S̄)Gal(k) acts on PicS (because PicS
has finite index in (Pic S̄)Gal(k)).



The main result

We thus have a map RS → AutPicS . The following is our main
theorem:

Theorem

The natural map AutS → AutPicS/RS has finite kernel and
cokernel.

(Note that if k is algebraically closed, then RS = W (Pic S) and we
recover the previous result.)



A few words about the proof

The main ingredients are the theory over algebraically closed fields,
some straightforward arguments on lattices, and the following
lemma:

Lemma

Let G be a group acting on groups A,B (not necessarily
commutative) such that A→ B has finite kernel and cokernel.
Then AG → BG has finite kernel and cokernel.

For arithmetical applications one needs to know more about RS

than just its definition.
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Coxeter groups

A Coxeter group is a pair (G ,R), where G is a group generated by
a set R of elements of order 2 with all relations of the form
(ri rj)

nij = 1. In particular, groups generated by reflections (such as
WS̄) are Coxeter groups. We set nij =∞ if there is no relation
involving ri , rj .

An element in a Coxeter group has a length. If G is finite, the
element of maximal length is unique.

A Coxeter group is represented by a Coxeter diagram, which is a
graph whose vertices are the elements of R and an edge labeled nij

joins the vertices Ri ,Rj if nij <∞.



Actions on Coxeter groups

If Γ is a group of permutations of R such that nij = niγ jγ for all
i , j , γ, then Γ extends to an action on G .

We use the following theorem, due to Hée but more accessibly
proved by Geck-Iancu:

Theorem

Let (G ,R) be a Coxeter group and Γ a group of permutations of R
as before. For each orbit O of Γ, let (GO ,O) be the Coxeter group
generated by ri for i ∈ O, and let L be the set of longest words in
GO for O with GO finite. Then (G Γ,L) is a Coxeter group.



Understanding RS

Recall that RS was defined to be the maximal subgroup of
W (PicS)Gal(k) that acts on PicS . (It is of finite index.)

Some generators of W (PicS)Gal(k) are easy to describe. For
example, let C1, . . . ,Cn be disjoint and Galois-conjugate
−2-curves. Then the ρCi

(reflections in the Ci ) commute, so the
only element of 〈ρCi

〉 fixed by Galois is
∏n

i=1 ρCi
.



The only other case

If C ,D are conjugate and intersect in 1 point, then ρCρDρC is
fixed by Galois.

More generally, let the orbit consist of 2n curves
C1,D1, . . . ,Cn,Dn, where Ci ·Di = 1 and all other intersections are
0. Then

∏n
i=1 ρCi

ρDi
ρCi

is fixed by Galois; this corresponds to
nρC1

ρD1
= 3.

There are no other examples. If the Coxeter diagram of a finite
Coxeter group has a transitive group of automorphisms, every
connected component has order at most 2. But we must have
nij ∈ {2, 3,∞} for the intersection numbers to be integers.
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Basic remarks

Over C the automorphism group of S depends (up to finite index)
only on Pic S .

Our primary interest (at least for now) is to distinguish K3 surfaces
with AutS finite from those with AutS infinite.

We will give two examples to illustrate the difference between the
situation with k algebraically closed and with k not.



Example 1

Let S/Q be a K3 surface that, over Q̄, admits an elliptic fibration
of rank 0 with four conjugate fibres of type I2 or II and no other

reducible fibres. Then PicS has Gram matrix

0 1 0
1 0 0
0 0 −8

 .

A K3 surface over Q̄ with this Picard lattice has an elliptic
fibration of rank 1 and hence an infinite automorphism group.

However, PicS/Q̄ has the matrix

(
0 1
1 0

)
⊕−2I4.

Nikulin showed that a K3 surface over an algebraically closed field
with this Picard lattice has finite automorphism group.



Example 2

In fact one can give an example of a K3 surface S/Q where AutS
is finite even though for all extensions K/Q, a K3 surface over C
with Picard lattice isomorphic to that of S/K has infinite
automorphism group.

This is done by taking a K3 surface S of degree 6 in P4 with two
conjugate disjoint conics, such that these three curves generate the
Picard group.

One shows that AutPicS has a finite-index subgroup isomorphic
to Z and that the product of the reflections in the two conics has
infinite order. Therefore it generates a subgroup of finite index.



Example 3 (1)

As a particular case of the conjecture on the first slide, one would
like to know about the surfaces Sc : x4 − y 4 = c(z4 − w 4) for
c ∈ Q. They have obvious rational points (±a : a : ±1 : 1), so the
problem is to prove that rational points are Zariski dense.

In this conference, we have heard a lot about the parity conjecture,
which would make short work of this problem. However, we want
an unconditional result.

We do not know how to do this. However, we have shown that
AutSc is finite for generic c (for which [Q(ζ8, 4

√
c) : Q] = 16).



Example 3 (2)

It turns out that PicSc is isomorphic to a sublattice of index 4 in
the lattice Λ of example 1 with Gram matrix(

0 1
1 0

)
⊕−2I4,

This allows us to determine a finite-index subgroup of O(PicSc).

(If Λ,Λ′ are commensurable, then O(Λ) ∩ O(Λ′) has finite index in
both.)



Example 3 (3)

We check that there are 14 Galois orbits of lines and 8 of conics
that give finite Coxeter groups and hence elements of RSc .

Writing these as matrices, we search for relations among the
generators of our finite-index subgroup of O(PicSc) and these
elements.

Then AutSc has a subgroup of finite index of the group with these
generators and relations.

Magma shows that the group is finite.



End

Thank you for your attention.

Are there any questions?


	Arithmetic of K3 surfaces
	Automorphisms of K3 surfaces
	The reflection group
	Examples

