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Chowla’s conjecture

In the book “The Riemann Hypothesis and Hilbert's Tenth Problem”,
Chowla raised the following conjecture.

Conjecture (Chowla, 1965)
For any quadratic Dirichlet character x, L(s,x) # 0 for all s € (0, 1). J

In particular, it suggests L(1/2,x) # 0.

Theorem (Soundrarajan, 2000)

At least 87.5% of odd squarefree integers d > 0 have the property that
L(1/2,xsd4) # O where xgq denotes the real quadratic character with
conductor 8d.
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Function Field

| Number field | Function field |
Q FC](X)
Z Fqlx]
positive primes | monic, irreducible polynomials
|| |f| = qdee”

Let D € [Fy[x] be monic and squarefree. Then we define a quadratic
character xp as follows.

For P a prime in Fq(x),

1 P splitsin Fy(x)(v/D)
xp(P) =< —1 Pisinertin Fy(x)(v/D)
0 P ramifies in Fy(x)(v/D)
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Function field

Definition
Let F; be a finite field with odd characteristic and let

g(N) = {D € Fq[x], monic, squarefree : |[D| < N, L(1/2,xp) = 0}

Question: Is g(N) equal to 0?7
Theorem (Bui—Florea, 2016)
With the notation above,

lg(N)| < 0.057N + o(N)

for any N = g*"t1 where n € Z.
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Theorem (L., 2017)
When q is a square, for any € > 0,

g(N)| = BNV~

with some nonzero constant B, and N > N..

Although the analogous statement of Chowla’s conjecture does not hold
over Fq(x), it may hold for almost all quadratic characters, i.e. it may be
the case that |g(N)|/N — 0 as N — .
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Geometric Interpretation

Let D € IFq[x] be a monic, squarefree polynomial. Over Fg, it defines a
hyperelliptic curve

Let P(x) € Z[x] be the characteristic polynomial of geometric Frobenius
acting on the Jacobian J(C).

Then,

L(1/2,xp) =0 < P(¢7?) =0
<= ./q is a Frobenius eigenvalue
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Geometric Interpretation

By Honda—Tate theory, when g is a square, there exists an elliptic curve Egy
over [, which admits ,/q as a Frobenius eigenvalue. Moreover, any
abelian variety with ,/q being a Frobenius eigenvalue has Eg as an
isogenous factor.

Thus,

L(1/2,xp) =0 <= P(g Y?)=0 «—= J(O)~Eyx A
for some abelian variety A.
Moreover,

J(C) ~ Eg x A <= 3 dominant map, C — Eg
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Maps Between Hyperelliptic Curves

Proposition (L., 2017)

Let Co be a hyperelliptic curve defined over IF, with an odd degree
defining equation or an even degree defining equation of the form y?> = f
where f is reducible.

For any € > 0, there exist positive constants B. and N, such that the
number of polynomials D € Fq[x] satisfying

o |[D|< N
o C:y? =D admits a dominant map to G

1
is at least B, - Ne+1~° for N > N,.
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Application to Ranks of Elliptic Curves

From an elliptic curve B : Y2 = f(X) over F,, we construct a constant
elliptic curve over the rational function field E = Ey xr, Fq(x).

Let C : y? = D(x) be a hyperelliptic curve over F,.

d dominant map, C — Ey <= rankEp > 2

where Ep is the quadratic twist of E by D.

Cc —— P!

(h(X):P(X)Y)l lh
Eo !

—
(X,Y)—=X

Since we have y? = D and p?(x)y? = f(h(x)), the point with coordinate
(h(x), p(x)) lies on DY? = f(X) over Fy(x).
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Application to Ranks of Elliptic Curves

Corollary (L., 2017)

Let E = Eq x Fq(x) be a constant elliptic curve over Fq(x).
Let R(N) = {D € Fq[x] : monic, squarefree,
Then for any € > 0,

|Ry(N)| > N/2—¢

Corollary (L., 2017)
Let E/Fq be an elliptic curve with /q as a Frobenius eigenvalue, define

P(g) = {D € Fg4[x] : monic, squarefree, of odd degree, deg D < 2g + 1},

R(g) = {D € P'(g) : Ep has rank 0}.
Then

|R(g)]
Jim o Ple)| 2 0427 + o(1).
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IFg
Degree d | |g’(99)| | 99 — 991 %
3 6| 648 0.2768
4 18 5832 0.3333
5 216 52488 0.4946
6 180 | 472392 0.3975
7 8658 | 4251528 0.5940

For degree 8, 9 and 10, due to the large number of monic squarefree
polynomials, we randomly sampled 5000000 data points for each and got
the following data. The sample set is denoted by S.

Degree d | |SNg’(99)] |S]| %
8 2660 | 5000000 0.5682
9 3262 | 5000000 0.6269
10 532 | 5000000 0.5814
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Fs
Degree d | |g/(59)| | 59 — 591 %
3 0 100
4 0 500
5 1 2500 0
6 0 12500
7 10 62500 0.2085
8 5 312500 0.1272

For degree 9 and 10, similarly, we sampled 5000000 data points for each.
The sample set is again denoted by S.

/(5d

Degree d | [SN&'(5))| | IS| | sty
9 317 | 5000000 0.3222
10 89 | 5000000 0.3109
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