Introduction	
•00000	

The number of integer points close to a polynomial

Patrick Letendre Laval University

11 July 2018

イロト 不得 とくほとう ほうとう

э

Patrick Letendre Laval University

Introduction	
00000	

Notation

•
$$f(x) := \alpha_n x^n + \dots + \alpha_1 x + \alpha_0$$
 a polynomial of degree $n \ge 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Patrick Letendre Laval University

Introduction		
00000	0000	000000

Notation

• $f(x) := \alpha_n x^n + \dots + \alpha_1 x + \alpha_0$ a polynomial of degree $n \ge 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\delta, X \in \mathbb{R}$ with $0 \le \delta \le 1/4$ and $X \ge 2$

Patrick Letendre Laval University

	work in progress
00000 0000	000000

Notation

• $f(x) := \alpha_n x^n + \dots + \alpha_1 x + \alpha_0$ a polynomial of degree $n \ge 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $\delta, X \in \mathbb{R}$ with $0 \le \delta \le 1/4$ and $X \ge 2$
- $\Gamma_{\delta} := \{(x,y) \in \mathbb{R} : x \in [X,2X], |y-f(x)| \le \delta\}$

Patrick Letendre Laval University

00000 0000 00000	Introduction		
	00000	0000	000000

Notation

• $f(x) := \alpha_n x^n + \dots + \alpha_1 x + \alpha_0$ a polynomial of degree $n \ge 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $\delta, X \in \mathbb{R}$ with $0 \le \delta \le 1/4$ and $X \ge 2$
- $\Gamma_{\delta} := \{(x,y) \in \mathbb{R} : x \in [X,2X], |y-f(x)| \le \delta\}$
- $\mathcal{S} := \#(\Gamma_{\delta} \cap \mathbb{Z}^2)$

Patrick Letendre Laval University

00000 0000 00000	Introduction		
	00000	0000	000000

Notation

• $f(x) := \alpha_n x^n + \dots + \alpha_1 x + \alpha_0$ a polynomial of degree $n \ge 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- $\delta, X \in \mathbb{R}$ with $0 \le \delta \le 1/4$ and $X \ge 2$
- $\Gamma_{\delta} := \{(x,y) \in \mathbb{R} : x \in [X, 2X], |y f(x)| \le \delta\}$
- $\mathcal{S} := \#(\Gamma_{\delta} \cap \mathbb{Z}^2)$

How large can \mathcal{S} be for a given f?

Patrick Letendre Laval University

Patrick Letendre Laval University

Introduction 000●00	

First Case: $f \notin \mathbb{Q}[x]$.

Patrick Letendre Laval University The number of integer points close to a polynomial

Introduction 000●00	
What if $\delta = 0$?	

First Case: $f \notin \mathbb{Q}[x]$.

• Linear algebra tells us that there are at most n solutions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Patrick Letendre Laval University The number of integer points close to a polynomial

Introduction ooo●oo	
What if $\delta = 0$?	

First Case: $f \notin \mathbb{Q}[x]$.

- Linear algebra tells us that there are at most n solutions.
- It is best possible, just think at

$$f(x) = \pi x(x-1)\cdots(x-n+1).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction ooo●oo	

First Case: $f \notin \mathbb{Q}[x]$.

- Linear algebra tells us that there are at most n solutions.
- It is best possible, just think at

$$f(x) = \pi x(x-1)\cdots(x-n+1).$$

Second Case: $f(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ such that $gcd(a_n, \dots, a_0, q) = 1$.

Introduction ooo●oo	

First Case: $f \notin \mathbb{Q}[x]$.

- Linear algebra tells us that there are at most n solutions.
- It is best possible, just think at

$$f(x) = \pi x(x-1)\cdots(x-n+1).$$

Second Case: $f(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ such that $gcd(a_n, \dots, a_0, q) = 1$.

• From Konyagin and Konyagin & Steger, we know that

$$\mathcal{S} \ll n \frac{X}{q^{1/n}} + n^{\omega(q)}.$$

Patrick Letendre Laval University

Introduction ooo●oo	

First Case: $f \notin \mathbb{Q}[x]$.

- Linear algebra tells us that there are at most n solutions.
- It is best possible, just think at

$$f(x) = \pi x(x-1)\cdots(x-n+1).$$

Second Case: $f(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ such that $gcd(a_n, \dots, a_0, q) = 1$.

• From Konyagin and Konyagin & Steger, we know that

$$\mathcal{S} \ll n \frac{X}{q^{1/n}} + n^{\omega(q)}.$$

• This is mostly best possible as well.

Patrick Letendre Laval University

Introduction		
000000	0000	000000

A first general result

Theorem

We have

$$\mathcal{S} \ll_n \delta^{\frac{2}{n(n+1)}} X + \mathcal{R}$$

where \mathcal{R} is the maximal number of integer points in Γ_{δ} that are all on a polynomial of degree at most n.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Patrick Letendre Laval University The number of integer points close to a polynomial

Introduction		
000000	0000	000000

A first general result

Theorem

We have

$$\mathcal{S} \ll_n \delta^{\frac{2}{n(n+1)}} X + \mathcal{R}$$

where \mathcal{R} is the maximal number of integer points in Γ_{δ} that are all on a polynomial of degree at most n.

イロト 不得下 イヨト イヨト 三日

Here and throughout the presentation, a lot of ideas are attributable to Filaseta, Huxley, Konyagin, Sargos, Steger, Swinnnerton-Dyer and Trifonov.

Introduction	
000000	

Corollary

Assume that the inequality

$$\left|\alpha_n - \frac{r}{s}\right| \le \frac{1}{s^2}$$

holds for some integers $r \in \mathbb{Z}$ and $s \in [1, X^n]$ with gcd(r, s) = 1. Then,

$$\mathcal{S} \ll_{n,\epsilon} \delta^{\frac{2}{n(n+1)}} X + \frac{X}{s^{1/n}} + X^{\epsilon}$$

イロト 不得 トイヨト イヨト 二日

for each $\epsilon > 0$. For n = 1 the third term can be replaced by 1.

Patrick Letendre Laval University

000000 •000	000000

Sketch of the proof of the theorem

Lemma

Let $M_1 = (x_1, y_1), \dots, M_{n+2} = (x_{n+2}, y_{n+2}) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ be ordered points according to $x_1 < \dots < x_{n+2}$. Set $\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^n & y_1 \end{vmatrix}$

$$\Lambda(M_1,\ldots,M_{n+2}) := \begin{vmatrix} \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n+2} & x_{n+2}^2 & \cdots & x_{n+2}^n & y_{n+2} \end{vmatrix}$$
Then, there are two preciditions

Then, there are two possibilities:

(i)
$$\Lambda(M_1, \dots, M_{n+2}) \neq 0$$
 in which case
 $|x_{n+2} - x_1| \geq \left(\frac{1}{(n+2)\delta}\right)^{\frac{2}{n(n+1)}},$

(ii) $\Lambda(M_1, \ldots, M_{n+2}) = 0$ in which case all the points are on a polynomial curve $\mathcal{C} := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$

Patrick Letendre Laval University

Proofs o●oo	

• We order the points $(x, y) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ according to the variable x.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Patrick Letendre Laval University The number of integer points close to a polynomial

Proofs o●oo	

• We order the points $(x, y) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ according to the variable x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• We apply the previous lemma to groups of (n+2) consecutive points.

Proofs o●oo	

- We order the points $(x, y) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ according to the variable x.
- We apply the previous lemma to groups of (n+2) consecutive points.
- We end up with a contribution of $\ll \delta^{\frac{2}{n(n+1)}} X$ and a sequence of polyomials that contains many points of $\Gamma_{\delta} \cap \mathbb{Z}^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Proofs oo●o	
•	Fix a polynomial $Q(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ with $gcd(a_n, \dots, a_0, q)$ Assume that $(x_0, y_0) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ and that $q \nmid P(x_0)$.	q) = 1. Then,

$$|f(x_0) - Q(x_0)| \ge \frac{1}{q} - \delta.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Patrick Letendre Laval University The number of integer points close to a polynomial

	Proofs oo●o	
٩	Fix a polynomial $Q(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ with $gcd(a_n, \dots, a_0, Assume that (x_0, y_0) \in \Gamma_{\delta} \cap \mathbb{Z}^2 and that q \nmid P(x_0).$	q) = 1. Then,

$$|f(x_0) - Q(x_0)| \ge \frac{1}{q} - \delta.$$

• We deduce that two consecutive sets of points must be far apart if $q \ll \frac{1}{\delta}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Proofs oo●o	
9	Fix a polynomial $Q(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ with $gcd(a_n, \dots, Assume that (x_0, y_0) \in \Gamma_{\delta} \cap \mathbb{Z}^2 and that q \nmid P(x)$	$(a_0, q) = 1.$ (a_0) . Then,

$$|f(x_0) - Q(x_0)| \ge \frac{1}{q} - \delta.$$

- We deduce that two consecutive sets of points must be far apart if $q \ll \frac{1}{\delta}$.
- In any case, the total contribution can be shown to be $\ll \delta^{\frac{2}{n(n+1)}} X$ with at most $\ll 1$ exceptions so that the result

$$\mathcal{S} \ll_n \delta^{\frac{2}{n(n+1)}} X + \mathcal{R}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへで

holds.

Patrick Letendre Laval University

Proofs	
0000	

Sketch of the proof of the corollary

• We apply the theorem. Only the contribution of the exceptionnal polynomial has to be estimated.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proofs	
000	

Sketch of the proof of the corollary

- We apply the theorem. Only the contribution of the exceptionnal polynomial has to be estimated.
- We distinguish 3 separated cases:

(1)
$$q \gg \frac{1}{\delta}$$
,
(2) $q \ll \frac{1}{\delta}$ and $|f(x) - P(x)| \ll \frac{1}{q}$ for each $x \in [X, 2X]$,
(3) $q \ll \frac{1}{\delta}$ and $|f(z) - P(z)| \gg \frac{1}{q}$ for a $z \in [X, 2X]$.

Patrick Letendre Laval University

Proofs	
0000	

Sketch of the proof of the corollary

- We apply the theorem. Only the contribution of the exceptionnal polynomial has to be estimated.
- We distinguish 3 separated cases:

(1)
$$q \gg \frac{1}{\delta}$$
,
(2) $q \ll \frac{1}{\delta}$ and $|f(x) - P(x)| \ll \frac{1}{q}$ for each $x \in [X, 2X]$,
(3) $q \ll \frac{1}{\delta}$ and $|f(z) - P(z)| \gg \frac{1}{q}$ for a $z \in [X, 2X]$.

• The conclusion follows quite easily.

Patrick Letendre Laval University The number of integer points close to a polynomial

		Work in progress
000000	0000	00000

By considering n + 1-tuples of integer points in $\Gamma_{\delta} \cap \mathbb{Z}^2$, we establish the combinatorial inequality

$$\mathcal{S} \ll_{n,\epsilon} \frac{X}{A} + \sum_{a_1,\dots,a_n=1}^A t(a_1,\dots,a_n) + \mathcal{M}_{\epsilon}$$

where $t(a_1, \ldots, a_n)$ counts the number of points x with $(x, y) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ such that

$$(x+a_1, y_1), (x+a_1+a_2, y_2), \dots, (x+a_1+\dots+a_n, y_n) \in \Gamma_{\delta} \cap \mathbb{Z}^2$$

with not all (the n + 1) of them on a polynomial of degree at most n - 1. \mathcal{M}_{ϵ} counts the contribution of sequences of ordered points in $\Gamma_{\delta} \cap \mathbb{Z}^2$ that are all on a polynomial of degree at most n - 1.

	Work in progress

It can be shown, as previously, that

$$\mathcal{M}_{\epsilon} \ll_{n,\epsilon,\epsilon_0} \delta^{\frac{1}{n-1}-\epsilon} X + \frac{X}{q^{\frac{1}{n-1}}} + X^{\epsilon_0}$$

where q is the denominator of some rational approximation of the leading term α_n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

	Work in progress

From there, the idea is to fix (a_1, \ldots, a_n) and to consider two consecutive points in $x, x + b \in t(a_1, \ldots, a_n)$.

Patrick Letendre Laval University The number of integer points close to a polynomial ・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

	Work in progress
	00000

From there, the idea is to fix (a_1, \ldots, a_n) and to consider two consecutive points in $x, x + b \in t(a_1, \ldots, a_n)$. We write

$$d_{0} := 0, \ d_{1} := a_{1}, \ d_{2} := a_{1} + a_{2}, \dots, \ d_{n} := a_{1} + \dots + a_{n},$$
$$D_{k} := \prod_{\substack{0 \le i < j \le n \\ i, j \ne k}} (d_{j} - d_{i}), \quad D_{k,l} := \prod_{\substack{0 \le i < j \le n \\ i, j \ne k, l}} (d_{j} - d_{i}),$$
$$e := gcd(D_{0}, \dots, D_{n}),$$
$$D_{s} := \max_{j} D_{j}, \quad D_{s,t} := \max_{j \ne s} D_{s,j}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Patrick Letendre Laval University

	Work in progress

Some well known arguments lead us to the identity

$$nbe\alpha_n = c + 2n\theta \frac{\delta e D_{s,t}}{D_s}$$

where b is considered as the variable that makes the term $nbe\alpha_n$ close to an integer c.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Work in progress

Some well known arguments lead us to the identity

$$nbe\alpha_n = c + 2n\theta \frac{\delta eD_{s,t}}{D_s}$$

where b is considered as the variable that makes the term $nbe\alpha_n$ close to an integer c.

We are thus led to estimate sums over (a_1, \ldots, a_n) that contains e:

$$\sum_{a_1,...,a_n=1}^{A} gcd(e,q), \ \sum_{a_1,...,a_n=1}^{A} e \text{ and } \sum_{a_1,...,a_n=1}^{A} \frac{eD_{s,t}}{D_s}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for example.

Patrick Letendre Laval University

	Work in progress
	000000

Both the right way to proceed and the best result are not completely done yet.

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Patrick Letendre Laval University

	Work in progress

Both the right way to proceed and the best result are not completely done yet. So far, we have

$$\mathcal{S} \ll_{n,\epsilon} X^{\epsilon} \left(\delta^{\beta_n} X + \frac{X}{q^{\frac{2}{n^2 - n + 2}}} + X^{1 - \frac{2}{n^2 + n}} \right)$$

when $n \ge 3$, $\left| \alpha_n - \frac{a}{q} \right| \le \frac{1}{qX}$ $(q \le X \text{ and } gcd(a,q) = 1)$ and

n	3	4	5	6	≥ 7
β_n	$\frac{5}{23}$	$\frac{7}{50}$	$\frac{3}{32}$	$\frac{3}{46}$	$\frac{2}{n^2-n}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Work in progress

Both the right way to proceed and the best result are not completely done yet. So far, we have

$$\mathcal{S} \ll_{n,\epsilon} X^{\epsilon} \left(\delta^{\beta_n} X + \frac{X}{q^{\frac{2}{n^2 - n + 2}}} + X^{1 - \frac{2}{n^2 + n}} \right)$$

when $n \ge 3$, $\left| \alpha_n - \frac{a}{q} \right| \le \frac{1}{qX}$ $(q \le X \text{ and } gcd(a,q) = 1)$ and

n	3	4	5	6	≥ 7
β_n	$\frac{5}{23}$	$\frac{7}{50}$	$\frac{3}{32}$	$\frac{3}{46}$	$\frac{2}{n^2-n}$

For n = 2 and the same assumptions on q, we find

$$\mathcal{S} \ll_{\epsilon} X^{\epsilon} \left(\delta^{\frac{1}{2}} X + \frac{X}{q^{\frac{1}{3}}} \right).$$

Patrick Letendre Laval University

	Work in progress
	00000

Thank you!

イロト イヨト イヨト イヨト 二日

Patrick Letendre Laval University