

The number of integer points close to a polynomial

Patrick Letendre Laval University

11 July 2018

イロト イ部 トイモト イモトー

 QQ Georgia

Patrick Letendre Laval University

Notation

•
$$
f(x) := \alpha_n x^n + \cdots + \alpha_1 x + \alpha_0
$$
 a polynomial of degree $n \ge 1$

Kロメ K部メ Kミメ Kミメーミー のRC

Patrick Letendre Laval University

Notation

 $f(x) := \alpha_n x^n + \cdots + \alpha_1 x + \alpha_0$ a polynomial of degree $n \ge 1$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

 \bullet $\delta, X \in \mathbb{R}$ with $0 \leq \delta \leq 1/4$ and $X \geq 2$

Patrick Letendre Laval University

Notation

 $f(x) := \alpha_n x^n + \cdots + \alpha_1 x + \alpha_0$ a polynomial of degree $n \ge 1$

- $\delta, X \in \mathbb{R}$ with $0 \leq \delta \leq 1/4$ and $X \geq 2$
- $\bullet \ \Gamma_{\delta} := \{ (x, y) \in \mathbb{R} : x \in [X, 2X], |y f(x)| \leq \delta \}$

Patrick Letendre Laval University

Notation

 $f(x) := \alpha_n x^n + \cdots + \alpha_1 x + \alpha_0$ a polynomial of degree $n \ge 1$

K □ K K @ K K 할 X K 할 X 및 및 X O Q O

- \bullet δ , $X \in \mathbb{R}$ with $0 \leq \delta \leq 1/4$ and $X \geq 2$
- $\bullet \ \Gamma_{\delta} := \{ (x, y) \in \mathbb{R} : x \in [X, 2X], |y f(x)| \leq \delta \}$
- $\mathcal{S}:=\#(\Gamma_{\delta}\cap\mathbb{Z}^2)$

Patrick Letendre Laval University

Notation

•
$$
f(x) := \alpha_n x^n + \cdots + \alpha_1 x + \alpha_0
$$
 a polynomial of degree $n \ge 1$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 10 Q Q

•
$$
\delta, X \in \mathbb{R}
$$
 with $0 \le \delta \le 1/4$ and $X \ge 2$

$$
\bullet \ \Gamma_{\delta} := \{(x, y) \in \mathbb{R} : \ x \in [X, 2X], |y - f(x)| \le \delta\}
$$

$$
\bullet\ \mathcal{S}:=\#(\Gamma_{\delta}\cap\mathbb{Z}^2)
$$

How large can S be for a given f ?

Patrick Letendre Laval University

 \boldsymbol{x}

Kロメ K部メ Kミメ Kミメーミー のRC

Patrick Letendre Laval University

First Case: $f \notin \mathbb{Q}[x]$.

Kロメ K部メ Kミメ Kミメーミー のRC

Patrick Letendre Laval University

First Case: $f \notin \mathbb{Q}[x]$.

 \bullet Linear algebra tells us that there are at most n solutions.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Patrick Letendre Laval University

First Case: $f \notin \mathbb{Q}[x]$.

- \bullet Linear algebra tells us that there are at most n solutions.
- It is best possible, just think at

$$
f(x) = \pi x(x-1)\cdots(x-n+1).
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Patrick Letendre Laval University

First Case: $f \notin \mathbb{Q}[x]$.

- Linear algebra tells us that there are at most *n* solutions.
- It is best possible, just think at

$$
f(x) = \pi x(x-1)\cdots(x-n+1).
$$

K ロ K K ④ K K X B X K X B X B X X G X C W B X D X C W B X D X C W B X D X C W B X D X C W B X D X D X D X D X D

Second Case: $f(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$ such that $gcd(a_n, \ldots, a_0, q) = 1$.

Patrick Letendre Laval University

First Case: $f \notin \mathbb{Q}[x]$.

- \bullet Linear algebra tells us that there are at most n solutions.
- It is best possible, just think at

$$
f(x) = \pi x(x-1)\cdots(x-n+1).
$$

Second Case: $f(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$ such that $gcd(a_n, \ldots, a_0, q) = 1$.

From Konyagin and Konyagin & Steger, we know that

$$
\mathcal{S} \ll n \frac{X}{q^{1/n}} + n^{\omega(q)}.
$$

KORK EX KEY KEY YOUR

Patrick Letendre Laval University

First Case: $f \notin \mathbb{Q}[x]$.

- \bullet Linear algebra tells us that there are at most n solutions.
- It is best possible, just think at

$$
f(x) = \pi x(x-1)\cdots(x-n+1).
$$

Second Case: $f(x) = \frac{P(x)}{q}$ with $P(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$ such that $gcd(a_n, \ldots, a_0, q) = 1$.

From Konyagin and Konyagin & Steger, we know that

$$
S \ll n \frac{X}{q^{1/n}} + n^{\omega(q)}.
$$

.
◆ ロ ▶ → ④ ▶ → 로 ▶ → 콘 ▶ │ 콘 │ ◆ 9 Q (^

• This is mostly best possible as well.

Patrick Letendre Laval University

A first general result

Theorem

We have

$$
\mathcal{S}\ll_{n}\delta^{\frac{2}{n(n+1)}}X+\mathcal{R}
$$

where R is the maximal number of integer points in Γ_{δ} that are all on a polynomial of degree at most n.

KORK EX KEY KEY YOUR

Patrick Letendre Laval University [The number of integer points close to a polynomial](#page-0-0)

A first general result

Theorem

We have

$$
\mathcal{S}\ll_{n}\delta^{\frac{2}{n(n+1)}}X+\mathcal{R}
$$

where R is the maximal number of integer points in Γ_{δ} that are all on a polynomial of degree at most n.

 OQ

Here and throughout the presentation, a lot of ideas are attributable to Filaseta, Huxley, Konyagin, Sargos, Steger, Swinnnerton-Dyer and Trifonov.

Corollary

Assume that the inequality

$$
\alpha_n - \frac{r}{s} \Big| \le \frac{1}{s^2}
$$

 $\bigg\}$ $\Big\}$ \vert

holds for some integers $r \in \mathbb{Z}$ and $s \in [1, X^n]$ with $gcd(r, s) = 1$. Then,

$$
\mathcal{S} \ll_{n,\epsilon} \delta^{\frac{2}{n(n+1)}} X + \frac{X}{s^{1/n}} + X^{\epsilon}
$$

for each $\epsilon > 0$. For $n = 1$ the third term can be replaced by 1.

Patrick Letendre Laval University

Sketch of the proof of the theorem

Lemma

Let $M_1 = (x_1, y_1), \ldots, M_{n+2} = (x_{n+2}, y_{n+2}) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ be ordered points according to $x_1 < \cdots < x_{n+2}$. Set $\Lambda(M_1,\ldots,M_{n+2}) :=$ $\begin{array}{ccccccccc}\n1 & x_1 & x_1^2 & \cdots & x_1^n & y_1\n\end{array}$ · · · 1 x_{n+2} x_{n+2}^2 \cdots x_{n+2}^n y_{n+2} $\bigg\}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array}$. Then, there are two possibilities: (i) $\Lambda(M_1,\ldots,M_{n+2})\neq 0$ in which case $|x_{n+2}-x_1|\geq \left(\frac{1}{(n+1)}\right)$ $\frac{1}{(n+2)\delta}$ $\frac{2}{n(n+1)}$, (ii) $\Lambda(M_1,\ldots,M_{n+2})=0$ in which case all the points are on a polynomial curve $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$ $C := \{(x, y) \in \mathbb{R}^2 : y = P(x), \deg P(x) \leq n, P(x) \in \mathbb{Q}[x]\}.$

Patrick Letendre Laval University

We order the points $(x, y) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ according to the variable x.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Patrick Letendre Laval University

We order the points $(x, y) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ according to the variable x.

KORK EX KEY ARY ARY KORK

• We apply the previous lemma to groups of $(n+2)$ consecutive points.

- We order the points $(x, y) \in \Gamma_{\delta} \cap \mathbb{Z}^2$ according to the variable x.
- We apply the previous lemma to groups of $(n+2)$ consecutive points.
- We end up with a contribution of $\ll \delta^{\frac{2}{n(n+1)}} X$ and a sequence of polyomials that contains many points of $\Gamma_{\delta}\cap\mathbb{Z}^2.$

KORK EXTERNE PROP

イロト イ御 トメミト メミト ニミー つんぴ

Patrick Letendre Laval University

We deduce that two consecutive sets of points must be far apart if $q \ll \frac{1}{\delta}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- We deduce that two consecutive sets of points must be far apart if $q \ll \frac{1}{\delta}$.
- In any case, the total contribution can be shown to be $\ll \delta^{\frac{2}{n(n+1)}} X$ with at most $\ll 1$ exceptions so that the result

$$
\mathcal{S}\ll_n\delta^{\frac{2}{n(n+1)}}X+\mathcal{R}
$$

K □ K K ④ K K E K K E K H (B K K K K K K K

holds.

Patrick Letendre Laval University

Sketch of the proof of the corollary

We apply the theorem. Only the contribution of the exceptionnal polynomial has to be estimated.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 안

Sketch of the proof of the corollary

- We apply the theorem. Only the contribution of the exceptionnal polynomial has to be estimated.
- We distinguish 3 separated cases:

(1)
$$
q \gg \frac{1}{\delta}
$$
,
\n(2) $q \ll \frac{1}{\delta}$ and $|f(x) - P(x)| \ll \frac{1}{q}$ for each $x \in [X, 2X]$,
\n(3) $q \ll \frac{1}{\delta}$ and $|f(z) - P(z)| \gg \frac{1}{q}$ for a $z \in [X, 2X]$.

KORK EX KEY KEY YOUR

Patrick Letendre Laval University

Sketch of the proof of the corollary

- We apply the theorem. Only the contribution of the exceptionnal polynomial has to be estimated.
- We distinguish 3 separated cases:

(1)
$$
q \gg \frac{1}{\delta}
$$
,
\n(2) $q \ll \frac{1}{\delta}$ and $|f(x) - P(x)| \ll \frac{1}{q}$ for each $x \in [X, 2X]$,
\n(3) $q \ll \frac{1}{\delta}$ and $|f(z) - P(z)| \gg \frac{1}{q}$ for a $z \in [X, 2X]$.

KORK EX KEY KEY YOUR

• The conclusion follows quite easily.

Patrick Letendre Laval University [The number of integer points close to a polynomial](#page-0-0)

By considering $n + 1$ -tuples of integer points in $\Gamma_{\delta} \cap \mathbb{Z}^2$, we establish the combinatorial inequality

$$
\mathcal{S} \ll_{n,\epsilon} \frac{X}{A} + \sum_{a_1,\ldots,a_n=1}^A t(a_1,\ldots,a_n) + \mathcal{M}_{\epsilon}
$$

where $t(a_1, \ldots, a_n)$ counts the number of points x with $(x,y)\in \Gamma_\delta\cap\mathbb{Z}^2$ such that

$$
(x+a_1,y_1), (x+a_1+a_2,y_2),..., (x+a_1+\cdots+a_n,y_n) \in \Gamma_{\delta} \cap \mathbb{Z}^2
$$

with not all (the $n + 1$) of them on a polynomial of degree at most $n-1$. M_{ϵ} counts the contribution of sequences of ordered points in $\Gamma_{\delta}\cap\mathbb{Z}^2$ that are all on a polynomial of degree at most $n-1$.

It can be shown, as previously, that

$$
\mathcal{M}_{\epsilon}\ll_{n,\epsilon,\epsilon_{0}}\delta^{\frac{1}{n-1}-\epsilon}X+\frac{X}{q^{\frac{1}{n-1}}}+X^{\epsilon_{0}}
$$

where q is the denominator of some rational approximation of the leading term α_n .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

From there, the idea is to fix (a_1, \ldots, a_n) and to consider two consecutive points in $x, x + b \in t(a_1, \ldots, a_n)$.

Kロメ K部メ Kミメ Kミメーミー のRC

Patrick Letendre Laval University

From there, the idea is to fix (a_1, \ldots, a_n) and to consider two consecutive points in $x, x + b \in t(a_1, \ldots, a_n)$. We write

$$
d_0 := 0, d_1 := a_1, d_2 := a_1 + a_2, \dots, d_n := a_1 + \dots + a_n,
$$

\n
$$
D_k := \prod_{\substack{0 \le i < j \le n \\ i, j \ne k}} (d_j - d_i), \quad D_{k,l} := \prod_{\substack{0 \le i < j \le n \\ i, j \ne k, l}} (d_j - d_i),
$$

\n
$$
e := \gcd(D_0, \dots, D_n),
$$

\n
$$
D_s := \max_j D_j, \quad D_{s,t} := \max_{j \ne s} D_{s,j}.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ ① 할 → ① 익 (2)

Patrick Letendre Laval University

Some well known arguments lead us to the identity

$$
nbe\alpha_n = c + 2n\theta \frac{\delta eD_{s,t}}{D_s}
$$

where b is considered as the variable that makes the term $nbe\alpha_n$ close to an integer c.

Kロメ K部メ Kミメ Kミメーミー のRC

Some well known arguments lead us to the identity

$$
nbe\alpha_n = c + 2n\theta \frac{\delta e D_{s,t}}{D_s}
$$

where b is considered as the variable that makes the term $nbe\alpha_n$ close to an integer c.

We are thus led to estimate sums over (a_1, \ldots, a_n) that contains e:

$$
\sum_{a_1,\dots,a_n=1}^A \gcd(e,q), \sum_{a_1,\dots,a_n=1}^A e \text{ and } \sum_{a_1,\dots,a_n=1}^A \frac{e_{b,s,t}}{b_s}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ ① 할 → ① 익 (2)

for example.

Patrick Letendre Laval University

Both the right way to proceed and the best result are not completely done yet.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Patrick Letendre Laval University

Both the right way to proceed and the best result are not completely done yet. So far, we have

$$
\mathcal{S} \ll_{n,\epsilon} X^{\epsilon} \left(\delta^{\beta_n} X + \frac{X}{q^{\frac{2}{n^2 - n + 2}}} + X^{1 - \frac{2}{n^2 + n}} \right)
$$

when $n \geq 3$, $\left| \alpha_n - \frac{a}{q} \right|$ $\left|\frac{a}{q}\right| \leq \frac{1}{qX}$ $(q \leq X \text{ and } gcd(a, q) = 1)$ and

Both the right way to proceed and the best result are not completely done yet. So far, we have

$$
\mathcal{S} \ll_{n,\epsilon} X^{\epsilon} \left(\delta^{\beta_n} X + \frac{X}{q^{\frac{2}{n^2 - n + 2}}} + X^{1 - \frac{2}{n^2 + n}} \right)
$$

when $n \geq 3$, $\left| \alpha_n - \frac{a}{q} \right|$ $\left|\frac{a}{q}\right| \leq \frac{1}{qX}$ $(q \leq X \text{ and } gcd(a, q) = 1)$ and

For $n = 2$ and the same assumptions on q, we find

$$
\mathcal{S} \ll_{\epsilon} X^{\epsilon} \left(\delta^{\frac{1}{2}} X + \frac{X}{q^{\frac{1}{3}}} \right).
$$

Patrick Letendre Laval University

Thank you!

Kロメ K部メ Kミメ Kミメーミー のRC

Patrick Letendre Laval University