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Introduction

Notation

f(x) := αnx
n + · · ·+ α1x+ α0 a polynomial of degree n ≥ 1

δ,X ∈ R with 0 ≤ δ ≤ 1/4 and X ≥ 2

Γδ := {(x, y) ∈ R : x ∈ [X, 2X], |y − f(x)| ≤ δ}
S := #(Γδ ∩ Z2)

How large can S be for a given f?
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What if δ = 0?

First Case: f /∈ Q[x].

Linear algebra tells us that there are at most n solutions.

It is best possible, just think at

f(x) = πx(x− 1) · · · (x− n+ 1).

Second Case: f(x) = P (x)
q with P (x) = anx

n + · · ·+ a0 ∈ Z[x]
such that gcd(an, . . . , a0, q) = 1.

From Konyagin and Konyagin & Steger, we know that

S � n
X

q1/n
+ nω(q).

This is mostly best possible as well.
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A first general result

Theorem

We have
S �n δ

2
n(n+1)X +R

where R is the maximal number of integer points in Γδ that are
all on a polynomial of degree at most n.

Here and throughout the presentation, a lot of ideas are
attributable to Filaseta, Huxley, Konyagin, Sargos, Steger,
Swinnnerton-Dyer and Trifonov.
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Corollary

Assume that the inequality∣∣∣αn − r

s

∣∣∣ ≤ 1

s2

holds for some integers r ∈ Z and s ∈ [1, Xn] with gcd(r, s) = 1.
Then,

S �n,ε δ
2

n(n+1)X +
X

s1/n
+Xε

for each ε > 0. For n = 1 the third term can be replaced by 1.
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Sketch of the proof of the theorem

Lemma

Let M1 = (x1, y1), . . . ,Mn+2 = (xn+2, yn+2) ∈ Γδ ∩Z2 be ordered
points according to x1 < · · · < xn+2. Set

Λ(M1, . . . ,Mn+2) :=

∣∣∣∣∣∣∣
1 x1 x21 · · · xn1 y1
...

...
... · · ·

...
...

1 xn+2 x2n+2 · · · xnn+2 yn+2

∣∣∣∣∣∣∣ .
Then, there are two possibilities:

(i) Λ(M1, . . . ,Mn+2) 6= 0 in which case

|xn+2 − x1| ≥
(

1
(n+2)δ

) 2
n(n+1)

,

(ii) Λ(M1, . . . ,Mn+2) = 0 in which case all the points are on a
polynomial curve
C := {(x, y) ∈ R2 : y = P (x), degP (x) ≤ n, P (x) ∈ Q[x]}.
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We order the points (x, y) ∈ Γδ ∩ Z2 according to the
variable x.

We apply the previous lemma to groups of (n+ 2)
consecutive points.

We end up with a contribution of � δ
2

n(n+1)X and a
sequence of polyomials that contains many points of
Γδ ∩ Z2.
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Fix a polynomial Q(x) = P (x)
q with

P (x) = anx
n + · · ·+ a0 ∈ Z[x] with gcd(an, . . . , a0, q) = 1.

Assume that (x0, y0) ∈ Γδ ∩ Z2 and that q - P (x0). Then,

|f(x0)−Q(x0)| ≥
1

q
− δ.

We deduce that two consecutive sets of points must be far
apart if q � 1

δ .

In any case, the total contribution can be shown to be

� δ
2

n(n+1)X with at most � 1 exceptions so that the result

S �n δ
2

n(n+1)X +R

holds.
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Sketch of the proof of the corollary

We apply the theorem. Only the contribution of the
exceptionnal polynomial has to be estimated.

We distinguish 3 separated cases:

q � 1

δ
,(1)

q � 1

δ
and |f(x)− P (x)| � 1

q
for each x ∈ [X, 2X],(2)

q � 1

δ
and |f(z)− P (z)| � 1

q
for a z ∈ [X, 2X].(3)

The conclusion follows quite easily.
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By considering n+ 1-tuples of integer points in Γδ ∩ Z2, we
establish the combinatorial inequality

S �n,ε
X

A
+

A∑
a1,...,an=1

t(a1, . . . , an) +Mε

where t(a1, . . . , an) counts the number of points x with
(x, y) ∈ Γδ ∩ Z2 such that

(x+a1, y1), (x+a1 +a2, y2), . . . , (x+a1 + · · ·+an, yn) ∈ Γδ ∩Z2

with not all (the n+ 1) of them on a polynomial of degree at
most n− 1. Mε counts the contribution of sequences of ordered
points in Γδ ∩ Z2 that are all on a polynomial of degree at most
n− 1.
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It can be shown, as previously, that

Mε �n,ε,ε0 δ
1

n−1
−εX +

X

q
1

n−1

+Xε0

where q is the denominator of some rational approximation of
the leading term αn.
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From there, the idea is to fix (a1, . . . , an) and to consider two
consecutive points in x, x+ b ∈ t(a1, . . . , an).

We write

d0 := 0, d1 := a1, d2 := a1 + a2, . . . , dn := a1 + · · ·+ an,

Dk :=
∏

0≤i<j≤n
i,j 6=k

(dj − di), Dk,l :=
∏

0≤i<j≤n
i,j 6=k,l

(dj − di),

e := gcd(D0, . . . , Dn),

Ds := max
j
Dj , Ds,t := max

j 6=s
Ds,j .
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Some well known arguments lead us to the identity

nbeαn = c+ 2nθ
δeDs,t

Ds

where b is considered as the variable that makes the term nbeαn
close to an integer c.

We are thus led to estimate sums over (a1, . . . , an) that contains
e:

A∑
a1,...,an=1

gcd(e, q),
A∑

a1,...,an=1

e and
A∑

a1,...,an=1

eDs,t

Ds

for example.
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Both the right way to proceed and the best result are not
completely done yet.

So far, we have

S �n,ε X
ε

(
δβnX +

X

q
2

n2−n+2

+X
1− 2

n2+n

)

when n ≥ 3,
∣∣∣αn − a

q

∣∣∣ ≤ 1
qX (q ≤ X and gcd(a, q) = 1) and

n 3 4 5 6 ≥ 7

βn
5
23

7
50

3
32

3
46

2
n2−n

For n = 2 and the same assumptions on q, we find

S �ε X
ε

(
δ

1
2X +

X

q
1
3

)
.
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Thank you!
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