Images of GL₂-type Galois representations

Jaclyn Lang
Max Planck Institute for Mathematics
joint work in progress with A. Conti, A. Medvedovsky

July 13, 2018

First Example of a Galois Representation

- E/\mathbb{Q} elliptic curve
- p a rational prime (fixed throughout talk)
- $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on the group

$$E[p^n] = \{ P \in E(\overline{\mathbb{Q}}) : p^n P = 0 \} \cong (\mathbb{Z}/p^n \mathbb{Z})^2$$

• Get $\rho_{E,p^n}:G_{\mathbb Q}\to \mathrm{GL}_2(\mathbb Z/p^n\mathbb Z)$ that is unramified outside a finite set S, and for all $\ell\not\in S$

$$\operatorname{tr} \rho_{E,p^n}(\operatorname{Frob}_{\ell}) \equiv 1 + \ell - \#E(\mathbb{F}_{\ell}) \bmod p^n.$$

• Get $\rho_{E,p^{\infty}}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{Z}_p)$ such that for all $\ell \notin S$,

$$\operatorname{tr} \rho_{E,p^{\infty}}(\operatorname{Frob}_{\ell}) = 1 + \ell - \#E(\mathbb{F}_{\ell}).$$

Sources of more Galois representations

A: complete local noetherian pro-p ring

 $\rho:\Pi\to \mathrm{GL}_2(A)$

Source	П	A finite over
classical eigenforms	$G_{\mathbb{Q}}$	\mathbb{Z}_p
p-adic families of	$G_{\mathbb{Q}}$	$\mathbb{Z}_p[[T]]$
modular forms		
(Hida/Coleman families)		
Hilbert modular forms	G_F ,	\mathbb{Z}_p
	F tot. real	·
<i>p</i> -adic families of HMFs	G_F	$\mathbb{Z}_p[[T_1,\ldots,T_n]]$
universal	$\dim_{\mathbb{F}_p} \operatorname{Hom}(\Pi, \mathbb{F}_p)$???
deformation	$< \infty$	

The Main Question

Question

If $\rho:\Pi\to GL_2(A)$ is any of the above representations, what is the image of ρ ?

Heuristic

The image of $\rho:\Pi\to \operatorname{GL}_2(A)$ should be as large as the symmetries of ρ allow.

What is a symmetry of ρ ?

Henceforth, assume A is topologically generated by $\mathrm{tr}(\rho(\Pi))$ as a ring.

Definition

A conjugate self-twist (CST) of ρ is a pair (σ, η_{σ}) , where $\sigma \in \operatorname{Aut} A$ and $\eta_{\sigma}: \Pi \to A^{\times}$ is a group homomorphism such that

$$\sigma(\operatorname{tr}\rho(g)) = \eta_{\sigma}(g)\operatorname{tr}\rho(g)$$

for all $g \in \Pi$. If (id_A, η) is a CST with $\eta \neq 1$, then ρ is **dihedral**.

$$\Sigma_{\rho} = \{\sigma \in \operatorname{Aut} A : \exists \eta : \Pi \to A^{\times}, (\sigma, \eta) \text{ is a CST for } \rho\}$$

A more precise expectation

Definition

Let A_0 be a ring and $0 \neq \mathfrak{a}_0 \subset A_0$ an ideal.

$$\Gamma_{A_0}(\mathfrak{a}_0) := \{ x \in \operatorname{SL}_2(A_0) : x \equiv \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \bmod \mathfrak{a}_0 \}.$$

We say ρ is A_0 -full if (up to conjugation) Im $\rho \supseteq \Gamma_{A_0}(\mathfrak{a}_0)$ for some $\mathfrak{a}_0 \neq 0$.

Heuristic

Let $\rho:\Pi\to \operatorname{GL}_2(A)$ be irreducible, non-dihedral, and assume $\operatorname{Im} \rho$ is not finite. Then ρ should be $A^{\Sigma_{\rho}}$ -full.

An Example

•
$$f = \sum_{n=1}^{\infty} a_n q^n = q + \sqrt{44}q^2 + 3\sqrt{44}q^3 + 12q^4 + 132q^6 - 9\sqrt{44}q^7 - 20\sqrt{44}q^8 + 153q^9 + 252q^{11} + \ldots \in S_6(25)$$

Note that

$$a_n \in egin{cases} \mathbb{Z} & n \equiv 1,4 mod 5 \ (ext{squares}) \ \sqrt{44}\mathbb{Z} & n \equiv 2,3 mod 5 \ (ext{non-squares}) \ \{0\} & n \equiv 0 mod 5. \end{cases}$$

- Taking (e.g.) p=11, let $\sigma:\sqrt{44}\mapsto -\sqrt{44}$ and $\eta_{\sigma}=\left(\frac{\cdot}{5}\right)$.
- (σ, η_{σ}) is a CST for $\rho_{f,11}$: for all primes $\ell \nmid 55$ have

$$\begin{split} \sigma(\operatorname{tr} \rho_{f,11}(\operatorname{Frob}_{\ell})) &= \sigma(a_{\ell}) = \eta_{\sigma}(\operatorname{Frob}_{\ell}) a_{\ell} \\ &= \eta_{\sigma}(\operatorname{Frob}_{\ell}) \operatorname{tr} \rho_{f,11}(\operatorname{Frob}_{\ell}). \end{split}$$

Why is $A^{\Sigma_{\rho}}$ optimal? The Example Continued.

• Letting $\rho = \rho_{f,11}$:

$$\begin{split} \sigma(\operatorname{tr}\!\rho(g)) &= \eta_\sigma(g)\operatorname{tr}\rho(g)\\ &\implies \operatorname{tr}\rho(g) \text{ is an eigenvector for the } \mathbb{Q}_{11}\text{-linear map }\sigma\\ &\implies \operatorname{tr}\rho(g) \in \mathbb{Q}_{11} \cup \sqrt{44}\mathbb{Q}_{11} \end{split}$$

• If $\Gamma_{\mathbb{Z}_{11}[\sqrt{11}]}(\mathfrak{a}) \subset \operatorname{Im} \rho$ for some $0 \neq \mathfrak{a} \subset \mathbb{Z}_{11}[\sqrt{11}]$ -ideal then

$$\left(\begin{smallmatrix}1+a&b\\c&1+d\end{smallmatrix}\right)\in\operatorname{Im}\rho$$

for all $a, b, c, d \in \mathfrak{a}$ such that a + d + ad - bc = 0.

• The Problem: $2+a+d=\operatorname{tr}\left(\begin{smallmatrix}1+a&b\\c&1+d\end{smallmatrix}\right)$ doesn't stay in $\mathbb{Q}_{11}\cup\sqrt{44}\mathbb{Q}_{11}$ as a,d run over $\mathfrak{a}.$

History

 $\rho:\Pi\to GL_2(A)$ irreducible, non-dihedral, infinite image arising from "Source" below

Source	Who proved $ ho$ is $A^{\Sigma_ ho}$ -full	Year
elliptic curves	Serre	1968
classical eigenforms	Ribet, Momose	1981
Hilbert modular forms	Nekovar	2012
Hida families	L.*	2016
Coleman families	Conti-Iovita-Tilouine*	2016

^{* =} when $\bar{\rho}:\Pi\to \mathrm{GL}_2(A/\mathfrak{m}_A)$ is absolutely irreducible and satisfies a mild regularity condition and $p\neq 2$

The beginning of everything...

COLLÈGE
DE
FRANCE
CHAIRE
D'ALGÈBRE ET GÉOMÈTRIE

Paris, le ? July 1963

dear Tate,

there is a world where may interest gon:

The list A he are alliptic cure defeated over are algebraic mules first, het f he a prime, and her of he kee his speker (- gla) of the borders yours of the p'-th division pto of A. Asperme the modular invariant of the division to an asymbosic integer. Here $y_{\mu} = y_{\mu} = y_{\mu}$.

This makes wheter almost all the compatitions of his makes wheter almost all the compatitions.

I had made on causes of the tight $y_{\mu}^2 = x_{\mu}^2 + A \times x_{\mu}^2$, because most of them have a non integer of the lift, a fine

4 = ▶ 4 = ▶ = 900

Our Result

 $s: \mathbb{F}^{\times} \to A^{\times}$ Teichmuller lift

Definition

We say that ρ has **constant determinant** if $\det \rho = s(\det \bar{\rho})$, where $\bar{\rho} : \Pi \to GL_2(\mathbb{F})$ is the mod \mathfrak{m}_A -reduction of ρ .

Definition

Say $\bar{\rho}$ is **regular** if $\exists \left(\begin{smallmatrix} \lambda_0 & 0 \\ 0 & \mu_0 \end{smallmatrix} \right) \in \operatorname{Im} \bar{\rho}$ such that $\pm 1 \neq \lambda_0 \mu_0^{-1} \in \mathbb{F}^{\Sigma_{\bar{\rho}}}$.

Theorem (Conti-L.-Medvedovsky, 2018)

Assume $\bar{\rho}$ is regular and ρ has constant determinant of 2-power order. If A is a domain with $p \neq 2$ and ρ is irreducible, non-dihedral, and $\operatorname{Im} \rho$ is not finite, then ρ is $A^{\Sigma_{\rho}}$ -full.

Final Remarks

Theorem (Conti-L.-Medvedovsky, 2018)

Assume $\bar{\rho}$ is regular and ρ has constant determinant of 2-power order. If A is a domain with $p \neq 2$ and ρ is irreducible, non-dihedral, and $\operatorname{Im} \rho$ is not finite, then ρ is $A^{\Sigma_{\rho}}$ -full.

- The constant determinant condition can always be achieved by twisting away the pro-p part of the determinant. Furthermore, once can deduce fullness results for the original representation from the twisted representation.
- Our work was inspired by work of Bellaïche. His work showed that ρ as in the theorem was A_0 -full for a fairly mysterious ring A_0 . The point of our work is to improve his A_0 and interpret this improved version in terms of conjugate self-twists of ρ , thus obtaining an optimality result.

Thank you!