Simultaneous Prime Values of Two Binary Forms

Peter Cho-Ho Lam

Department of Mathematics Simon Fraser University chohol@sfu.ca

Peter Cho-Ho Lam, Simon Fraser University [Simultaneous Prime Values of Two Binary Forms](#page-33-0)

 4 D \rightarrow 4 \overline{e} \rightarrow 4 \overline{e} \rightarrow 4 \overline{e} \rightarrow

Ξ

 $2Q$

Twin Primes

Twin Prime Conjecture

There exists infinitely many $x \in \mathbb{Z}$ such that both x and $x + 2$ are prime.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

目

Twin Primes

Twin Prime Conjecture

There exists infinitely many $x \in \mathbb{Z}$ such that both x and $x + 2$ are prime.

Question 1

Are there infinitely many *x*, $y \in \mathbb{Z}$ such that both *x* and $x + 2y$ are primes?

E

Main Problem

Question 2

Let $F, G \in \mathbb{Z}[x, y]$ be two irreducible binary forms. Are there infinitely many $x, y \in \mathbb{Z}$ such that both $F(x, y)$ and $G(x, y)$ are primes?

Main Problem

Question 2

Let $F, G \in \mathbb{Z}[x, y]$ be two irreducible binary forms. Are there infinitely many *x*, $y \in \mathbb{Z}$ such that both $F(x, y)$ and $G(x, y)$ are primes?

Fouvry and Iwaniec (1997)

There are infinitely many primes of the form $x^2 + y^2$ such that y is also a prime.

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \rightarrow A \Rightarrow A$

Main Problem

Question 2

Let $F, G \in \mathbb{Z}[x, y]$ be two irreducible binary forms. Are there infinitely many $x, y \in \mathbb{Z}$ such that both $F(x, y)$ and $G(x, y)$ are primes?

Fouvry and Iwaniec (1997)

There are infinitely many primes of the form $x^2 + y^2$ such that y is also a prime.

Main Result

Let $F, G \in \mathbb{Z}[X, Y]$ be two irreducible binary forms such that deg $F = 2$ and deg $G = 1$. If F is positive definite, then there are infinitely many *x*, *y* ∈ $\mathbb Z$ such that $F(x, y)$ and $G(x, y)$ are both primes.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ .

Ξ

 $na \alpha$

Sieve Method - Asymptotic Sieve

We wish to obtain an asymptotic formula for the sum

$$
\sum_{n\leq x}a_n\Lambda(n)
$$

where $\Lambda(n)$ is the von Mangoldt function,

$$
\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k, k \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}
$$

$$
a_n=1 \quad \text{or} \quad a_n=\Lambda(n+2).
$$

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \Rightarrow A$

Sieve Method - Asymptotic Sieve

We wish to obtain an asymptotic formula for the sum

$$
\sum_{n\leq x}a_n\Lambda(n)
$$

where $\Lambda(n)$ is the von Mangoldt function,

$$
\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k, k \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}
$$

For example, we can take

$$
a_n=1 \quad \text{or} \quad a_n=\Lambda(n+2).
$$

 $4\Box$ \rightarrow $4\Box$ \rightarrow $4\Box$ \rightarrow $4\Box$ \rightarrow

Asymptotic Sieve

In general, since

$$
-\sum_{d|n}\mu(d)\log d=\Lambda(n)
$$

where μ is the Möbius function,

$$
\mu(n) = \begin{cases}\n(-1)^r & \text{if } n = p_1 p_2 ... p_r, \ p_i \text{ are all distinct primes} \\
0 & \text{otherwise,} \n\end{cases}
$$

$$
\sum_{n\leq x} a_n \Lambda(n) = -\sum_{n\leq x} a_n \sum_{d|n} \mu(d) \log d = -\sum_{d\leq x} \mu(d) \log d \sum_{\substack{n\leq x \\ n\equiv 0 \pmod{d}}} a_n.
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

目

 $2Q$

Asymptotic Sieve

In general, since

$$
-\sum_{d|n}\mu(d)\log d=\Lambda(n)
$$

where μ is the Möbius function,

$$
\mu(n) = \begin{cases}\n(-1)^r & \text{if } n = p_1 p_2 ... p_r, \ p_i \text{ are all distinct primes} \\
0 & \text{otherwise,} \n\end{cases}
$$

we have

$$
\sum_{n\leq x}a_n\Lambda(n)=-\sum_{n\leq x}a_n\sum_{d|n}\mu(d)\log d=-\sum_{d\leq x}\mu(d)\log d\sum_{\substack{n\leq x\\ n\equiv 0\,(\text{mod }d)}}a_n.
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ..

目

 $2Q$

Asymptotic Sieve

Suppose for all *d* we have the following approximation:

$$
\sum_{\substack{n\leq x\\n\equiv 0\,(\text{mod }d)}}a_n=g(d)\sum_{n\leq x}a_n+r_d(x)
$$

for some multiplicative function *g*(*d*).

$$
-\sum_{d\leq x}\mu(d)\log d\sum_{\substack{n\leq x\\ n\equiv 0\,(\text{mod }d)}}a_n=-\sum_{d\leq x}\mu(d)\log d\left(g(d)\sum_{n\leq x}a_n+r_d(x)\right)
$$

$$
\approx -\left(\sum_{d\leq x}\mu(d)g(d)\log d\right)\sum_{n\leq x}a_n.
$$

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \rightarrow A \Rightarrow A$

目

 299

Asymptotic Sieve

Suppose for all *d* we have the following approximation:

$$
\sum_{\substack{n\leq x\\n\equiv 0\,(\text{mod }d)}}a_n=g(d)\sum_{n\leq x}a_n+r_d(x)
$$

for some multiplicative function *g*(*d*). Then the sum we need to estimate turns into

$$
-\sum_{d\leq x}\mu(d)\log d\sum_{\substack{n\leq x\\ n\equiv 0\,(\text{mod }d)}}a_n=-\sum_{d\leq x}\mu(d)\log d\bigg(g(d)\sum_{n\leq x}a_n+r_d(x)\bigg)\\ \approx -\bigg(\sum_{d\leq x}\mu(d)g(d)\log d\bigg)\sum_{n\leq x}a_n.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

E

ASYMPTOTIC Sieve

For nice functions g (say $g(d) = 1/d$), we have

$$
-\sum_{d}\mu(d)g(d)\log d=\prod_{p}(1-g(p))\left(1-\frac{1}{p}\right)^{-1}=H.
$$

Therefore if the remainder terms $r_d(x)$ are small on average, then we expect

$$
\sum_{n\leq x} a_n \Lambda(n) \sim H \sum_{n\leq x} a_n
$$

for some constant *H*.

When $a_n = 1$, we have $g(d) = 1/d$, $H = 1$, and we get back the Prime Number Theorem.

4 (D) 4 (B) 4 (B) 4 (B) 4

目

ASYMPTOTIC Sieve

For nice functions g (say $g(d) = 1/d$), we have

$$
-\sum_{d}\mu(d)g(d)\log d=\prod_{p}(1-g(p))\left(1-\frac{1}{p}\right)^{-1}=H.
$$

Therefore if the remainder terms $r_d(x)$ are small on average, then we expect

$$
\sum_{n\leq x} a_n \Lambda(n) \sim H \sum_{n\leq x} a_n
$$

for some constant *H*.

When $a_n = 1$, we have $g(d) = 1/d$, $H = 1$, and we get back the Prime Number Theorem.

4 (D) 4 (B) 4 (B) 4 (B) 4

目

Type I Estimates

Type I: we wish to show that

$$
\sum_{d\leq D} |r_d(x)| \ll o\bigg(\sum_{n\leq x} a_n\bigg)
$$

for *D* as large as possible (best possible: $D = x^{1-\epsilon}$).

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ..

目

 $2Q$

Type II Estimates

Type II: for large values of *d*,

The logarithm factor can be removed and it suffices to estimate

$$
\sum_{n\sim N}\bigg|\sum_{m\sim M}\mu(m)a_{mn}\bigg|.
$$

イロト イ部 トイ磨 トイ磨 トー

目

Settings

Let
$$
F(x, y) = \alpha x^2 + \beta xy + \gamma y^2
$$
 and

$$
a_n = \sum_{\substack{\ell \in \mathbb{Z}, m \in \mathbb{N} \\ F(\ell,m) = n \\ (\ell,m) = 1}} \Lambda(m).
$$

Two goals: estimate

$$
\sum_{d\leq D}\left|\sum_{\substack{n\leq x\\n\equiv 0\,\text{(mod }d)}}a_n-g(d)\sum_{n\leq x}a_n\right|\quad\text{and}\quad\sum_{n\sim N}\left|\sum_{m\sim M}\mu(m)a_{mn}\right|.
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

目

 2990

Type I Estimates

$$
A_d(f) = \sum_{\substack{F(\ell,m)\equiv 0 \pmod{d} \\ (\ell,m)=1}} \sum_{\substack{(\ell,m)=1 \\ \text{mod } d)}} \Lambda(m)f(F(\ell,m))
$$

=
$$
\sum_{\substack{\nu \pmod{d} \\ F(\nu,1)\equiv 0 \pmod{d}}} \sum_{a\in \mathbb{N}} \mu(a) \sum_{m\in \mathbb{N}} \Lambda(am) \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \equiv \nu m \pmod{d}}} f(F(a\ell,am)).
$$

By Poisson summation formula, the inner sum becomes

$$
\sum_{\ell \equiv \nu m \, (\text{mod } d)} f(F(a\ell, am)) = \frac{1}{d} \sum_{h \in \mathbb{Z}} e\left(\frac{h \, \nu m}{d}\right) F_{a,m}\left(\frac{h}{d}\right)
$$

where

$$
F_{a,m}(z) = \int_{-\infty}^{\infty} f(F(at, am))e(-zt) dt.
$$

(すき) すき) (

 \mathbb{R}^2

目

 $2Q$

Type I Estimates

Large sieve: if $d_1, d_2 \sim D$, $F(v_1, 1) \equiv 0 \pmod{d_1}$, $F(v_2, 1) \equiv 0$ $(mod d_2),$ then $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ *ν*1 *d*1 − *ν*2 *d*2 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\gg 1$ *D* .

$$
\sum_{D \leq d \leq 2D} \sum_{F(\nu,1) \equiv 0 \pmod{d}} \left| \sum_{n \leq N} \alpha_n e\left(\frac{\nu n}{d}\right) \right|^2 \ll_F (D+N) \sum_{n} |\alpha_n|^2.
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

目

Type I Estimates

Large sieve: if $d_1, d_2 \sim D$, $F(v_1, 1) \equiv 0 \pmod{d_1}$, $F(v_2, 1) \equiv 0$ $(mod d_2),$ Ш \mathcal{H} 1

then
$$
\left\| \frac{\nu_1}{d_1} - \frac{\nu_2}{d_2} \right\| \gg \frac{1}{D}
$$
.

Balog, Blomer, Dartyge and Tenenbaum (2011)

Let $F(x, y) = \alpha x^2 + \beta xy + \gamma y^2 \in \mathbb{Z}[x, y]$ be an arbitrary quadratic form whose discriminant $\Delta = \beta^2 - 4\alpha\gamma$ is not a perfect square. For any sequence α_n of complex numbers, positive real numbers D, N , we have

$$
\sum_{D \leq d \leq 2D} \sum_{F(\nu,1) \equiv 0 \pmod{d}} \left| \sum_{n \leq N} \alpha_n e\left(\frac{\nu n}{d}\right) \right|^2 \ll_F (D+N) \sum_{n} |\alpha_n|^2.
$$

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト -

目

Type II Estimates

We need to estimate

 ∇ *n*∼*N* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ ∇ *m*∼*M µ*(*m*)*amn* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$.

イロト イ部 トイ君 トイ君 トー

目

Type II Estimates

We need to estimate

 ∇ *n*∼*N* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ ∇ *m*∼*M µ*(*m*)*amn* $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$.

What do we know about *m*, *n* if

$$
mn = F(x, y) = \alpha x^2 + \beta xy + \gamma y^2
$$

for some $x, y \in \mathbb{Z}, (x, y) = 1$?

K ロ ▶ K 倒 ▶ K 道 ▶ K 道 ▶ ...

目

 $2Q$

Type II Estimates

Simple example: $F(x, y) = x^2 + y^2$.

$$
(a2 + b2)(u2 + v2) = (au + bv)2 + (av - bu)2.
$$

E

Type II Estimates

Simple example: $F(x, y) = x^2 + y^2$.

If $m = a^2 + b^2$ and $n = u^2 + v^2$, then $mn = x^2 + y^2$ with $x = au + bv, y = av - bu$ since

$$
(a2 + b2)(u2 + v2) = (au + bv)2 + (av - bu)2.
$$

Type II Estimates

Simple example: $F(x, y) = x^2 + y^2$.

If $m = a^2 + b^2$ and $n = u^2 + v^2$, then $mn = x^2 + y^2$ with $x = au + bv, y = av - bu$ since

$$
(a2 + b2)(u2 + v2) = (au + bv)2 + (av - bu)2.
$$

Conversely, if $mn = x^2 + y^2$ with $(x, y) = 1$, then we can write $m = a^2 + b^2$ and $n = u^2 + v^2$ such that $x = au + bv$, $y = av - bu$.

4 (D) 4 (B) 4 (B) 4 (B) 4

Type II Estimates

Simple example: $F(x, y) = x^2 + y^2$.

If $m = a^2 + b^2$ and $n = u^2 + v^2$, then $mn = x^2 + y^2$ with $x = au + bv, y = av - bu$ since

$$
(a2 + b2)(u2 + v2) = (au + bv)2 + (av - bu)2.
$$

Conversely, if $mn = x^2 + y^2$ with $(x, y) = 1$, then we can write $m = a^2 + b^2$ and $n = u^2 + v^2$ such that $x = au + bv$, $y = av - bu$.

It is NOT true in general.

Type II Estimates

Trickier example: $F(x, y) = x^2 + 5y^2$ and

$$
(a2 + 5b2)(u2 + 5v2) = (au + 5bv)2 + 5(av - bu)2.
$$

Type II Estimates

Trickier example: $F(x, y) = x^2 + 5y^2$ and

$$
(a2 + 5b2)(u2 + 5v2) = (au + 5bv)2 + 5(av - bu)2.
$$

For example, $2 \times 3 = (1)^2 + 5(1)^2$, but both $2 = x^2 + 5y^2$ and $3 = x^2 + 5y^2$ are not even solvable in integers.

K ロ ▶ K 倒 ▶ K ミ ▶ K ミ ▶ ...

Type II Estimates

Trickier example: $F(x, y) = x^2 + 5y^2$ and

$$
(a2 + 5b2)(u2 + 5v2) = (au + 5bv)2 + 5(av - bu)2.
$$

For example, $2 \times 3 = (1)^2 + 5(1)^2$, but both $2 = x^2 + 5y^2$ and $3 = x^2 + 5y^2$ are not even solvable in integers.

But 2 and 3 can be represented by $2x^2 + 2xy + 3y^2$, and we also have the identity

$$
(2a2+2ab+3b2)(2u2+2uv+3v2)=(2au+av+bu+3bv)2+5(au-bv)2.
$$

 Ω

≘

Type II Estimates

In general, if $mn = F(x, y)$ and $(x, y) = 1$, then we wish to show that m can be represented by another binary quadratic form of the same discriminant, say *f*.

"
$$
f \times g = F, g = F \times F^{-1}
$$
".

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \Rightarrow A$

Type II Estimates

In general, if $mn = F(x, y)$ and $(x, y) = 1$, then we wish to show that m can be represented by another binary quadratic form of the same discriminant, say *f*.

And then *n* can be represented by *g*, where

"
$$
f \times g = F
$$
, $g = F \times f^{-1}$ ".

We would also need a precise formula for *g* and an identity for the convolution.

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \Rightarrow A$

Factorization

Lemma

If $mn = \alpha X^2 + \beta XY + \gamma Y^2$ for some integers X, Y with $(X, Y) = 1$, then there exists a binary quadratic form $f(x,y) = ax^2 + bxy + cy^2$ and integers *u*, *v*, *w*, *z* such that $(u, v) = (w, z) = 1$ and

$$
au^{2} + buv + cv^{2} = m,
$$

\n
$$
a\alpha w^{2} + Bwz + \frac{B^{2} + \Delta}{4a\alpha}z^{2} = n,
$$

\n
$$
\left(au + \frac{b + \beta}{2}v\right)w + \left(\frac{B - \beta}{2\alpha}u + \frac{(b + \beta)B + \Delta - b\beta}{4a\alpha}v\right)z = X,
$$

\n
$$
-\alpha vw + \left(u - \frac{B - b}{2a}v\right)z = Y;
$$

and the choice of *f*, *u*, *v*, *w*, *z* are "unique".

 $29a$

Related Problems

- **¹** quadratic+linear
- **²** cubic+linear
- **³** quadratic + quadratic

イロト イ部 トイ君 トイ君 トー

目

 2990

THE END!

Peter Cho-Ho Lam, Simon Fraser University [Simultaneous Prime Values of Two Binary Forms](#page-0-0)

K ロ ▶ K 倒 ▶ K 道 ▶ K 道 ▶

 2990 重.