Computing the Cassels-Tate pairing

Tom Fisher

DPMMS University of Cambridge

CNTA XV Laval University 10th July 2018

Tom Fisher Computing the Cassels-Tate pairing

Definition. Let *A* be a finite dimensional associative *K*-algebra.

A is a central simple algebra $\iff A \otimes_K \overline{K} \cong \operatorname{Mat}_n(\overline{K})$

We may represent *A* by n^6 structure constants $c_{ijk} \in K$, i.e. if *A* has basis x_1, \ldots, x_{n^2} then $x_i x_j = \sum_k c_{ijk} x_k$.

Trivialisation problem. Given *A* known to be isomorphic to $Mat_n(\mathbb{Q})$ find such an isomorphism explicitly. (N.B. $n = 2 \leftrightarrow$ solving a conic.)

Isomorphism problem. Given A_1 and A_2 central simple algebras over \mathbb{Q} , that we know are isomorphic, find such an isomorphism explicitly.

Trivialisation problem. Given *A* known to be isomorphic to $Mat_n(\mathbb{Q})$ find such an isomorphism explicitly.

Method of solution. See Cremona, F., O'Neil, Simon, Stoll (2015) and Ivanyos, Rónyai, Schicho (2011).

(i) Compute a maximal order Λ ⊂ *A*.
(ii) Compute a real trivialisation A ⊗_Q ℝ ≃ Mat_n(ℝ).
(iii) Look for short vectors in the lattice Λ ⊂ ℝ^{n²}.
If we find a zerodivisor then the problem reduces to a smaller one (i.e. *n* replaced by a proper divisor).

Remark. \exists analogue over number fields *K*. However unless *n* and *K* are both small then Step (iii) is impractical.

Central simple algebras (ctd)

Isomorphism problem. Given A_1 and A_2 central simple algebras over \mathbb{Q} , that we know are isomorphic, find such an isomorphism explicitly.

Method of solution. Reduce to trivialisation problem using

$$A_1 \cong A_2 \iff A_1 \otimes A_2^{\mathrm{op}} \cong \mathrm{Mat}_{n^2}(\mathbb{Q}).$$

Suppose Gal(L/K) $\cong C_n = \langle \sigma \rangle$ and $b \in K^{\times}$. The *cyclic algebra* (L/K, b) is $\{a_0 + a_1v + \ldots + a_{n-1}v^{n-1} | a_i \in L\}$ with multiplication determined by $va = \sigma(a)v$ for all $a \in L$, and $v^n = b$.

$$egin{aligned} & rac{\mathcal{K}^{ imes}}{\mathcal{N}_{L/\mathcal{K}}(L^{ imes})} \cong \mathsf{Br}(L/\mathcal{K}) := \mathsf{ker}(\mathsf{Br}(\mathcal{K}) o \mathsf{Br}(L)) \ & b \mapsto (L/\mathcal{K},b) \end{aligned}$$

Descent on elliptic curves

Cassels-Tate pairing

$$\langle \;,\;
angle_{\mathsf{CT}}: \mathcal{S}^{(n)}(E/\mathbb{Q}) imes \mathcal{S}^{(n)}(E/\mathbb{Q}) o \mathbb{Q}/\mathbb{Z}$$

Properties: bilinear, alternating, kernel is $im(\alpha)$.

Computing \langle , \rangle_{CT} improves our upper bound on rank $E(\mathbb{Q})$ coming from *n*-descent to that coming from *n*²-descent.

	<i>n</i> = 2	<i>n</i> = 3
n ² -descent	Siksek (1995) Womack (2003) Stamminger (2005)	Creutz (2010)
CTP via Weil pairing definition	Cassels (1998)	F., Newton (2014)
CTP via homogeneous space definition	Donnelly (2015)	This talk

CTP on 2-power isogeny Selmer groups: F. (2017). CTP on 3-isogeny Selmer groups: van Beek (2015).

An example (via the Brauer-Manin obstruction)

$$E = 1913b1: \qquad y^2 + xy = x^3 + x^2 - 34x - 135$$
$$E(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \qquad \operatorname{III}(E/\mathbb{Q}) \cong (\mathbb{Z}/3\mathbb{Z})^2$$

One of the non-trivial elements in $S^{(3)}(E/\mathbb{Q})$ is represented by $C = \{f_1(x, y, z) = 0\} \subset \mathbb{P}^2$ where

$$f_1 = x^3 + y^3 + z^3 - xy^2 + y^2z + xz^2 + 5yz^2 + xyz.$$

A proof that $C(\mathbb{Q}) = \emptyset$. Let $L = \mathbb{Q}(\zeta_7) \cap \mathbb{R}$ and $g = 3x^3 + 4x^2y + 7x^2z - 6xy^2 + 3y^3$. Let $\mathcal{A} = (L/\mathbb{Q}, g) \in Br(\mathbb{Q}(C))$. We find that $\mathcal{A} \in Br(C)$ and for every $P_p \in C(\mathbb{Q}_p)$

$$\operatorname{inv}_{p}(\mathcal{A}(P_{p})) = \begin{cases} 0 & \text{if } p \neq 7\\ 1/3 & \text{if } p = 7 \end{cases}$$

But if $P \in C(\mathbb{Q})$ then $\sum_{\rho} inv_{\rho}(\mathcal{A}(P)) = 0$ by class field theory.

How did we find $\mathcal{A} = (L/\mathbb{Q}, g)$?

Let *C*, *D* be plane cubics representing elements of $S^{(3)}(E/K)$.

Method to compute $\langle [C], [D] \rangle_{CT}$. (i) Find a *K*-rational line meeting $D \subset \mathbb{P}^2$ in a point $P_D \in D(L)$ where L/K is a cyclic cubic extension, say $\operatorname{Gal}(L/K) = \langle \sigma \rangle$. (ii) Let $H \in \operatorname{Div}_K^3(C)$ be a hyperplane section. Find $H' \in \operatorname{Div}_L^3(C)$ such that $\operatorname{Pic}^0(C) \cong \operatorname{Pic}^0(D)$

$$[H'-H] \leftrightarrow [P_D - \sigma(P_D)]$$

(iii) Solve for $g \in K[x, y, z]$ a cubic form with $C \cap \{g = 0\} = H' + \sigma H' + \sigma^2 H'.$

Then

$$\frac{H^{1}(K, E)}{\langle [C] \rangle} \cong \frac{\mathsf{Br}(C)}{\mathsf{Br}(K)}$$
$$[D] \mapsto (L/K, g) =: \mathcal{A}$$

and $\langle [C], [D] \rangle_{CT} = \sum_{\nu} inv_{\nu} \mathcal{A}(P_{\nu}).$

Let D/K be a plane cubic with $D(K_v) \neq \emptyset$ for all v.

(i) Find a K-rational line meeting $D \subset \mathbb{P}^2$ in a point $P_D \in D(L)$ where L/K is a cyclic cubic extension.

If $D(K) \neq \emptyset$ then the pairing is trivial. Otherwise, intersecting with a line gives a point $P_D \in D(L)$ for L/K a Galois extension with $\text{Gal}(L/K) \cong C_3$ or S_3 .

It is an open question whether cubic points always exist, related to the arithmetic of K3 surfaces: see van Luijk (2011).

If they don't always exist, or are hard to find, then the fall-back is to replace our base field K by a quadratic extension. This won't destroy the pairing we are trying to compute, but will make all the computations harder.

Recall that $\operatorname{Gal}(L/K) \cong C_3 = \langle \sigma \rangle$.

Step (ii) comes down to the trivialisation problem for a 9-dimensional central simple algebra *A* over *L*.

Two methods to construct *A*:

- via theta groups (Cremona, F., O'Neil, Simon, Stoll, 2008)
- via generators and relations (Kuo, 2011)

Lemma. If [C] + [D] = [C'] for some plane cubic C' (as always happens for Selmer group elements) then $A \cong \sigma(A)$.

Using a combination of the above two constructions I can write down a specific isomorphism $\phi : A \rightarrow \sigma(A)$.

Remarks on Step (ii) (ctd)

Conjecture. The diagram

commutes.

Assuming the conjecture we have $A \cong A_0 \otimes_K L$ for some *K*-algebra A_0 . However, even in cases where $A \cong Mat_3(L)$ we need not have $A_0 \cong Mat_3(K)$.

Two possible solutions.

- Find a better choice of ϕ .
- By computing the local invariants of A₀, solve for b ∈ K[×] such that A₀ ≅ (L/K, b). The trivialization problem over L is then reduced to the isomorphism problem over K.

THE END

Tom Fisher Computing the Cassels-Tate pairing