Parity of ranks of abelian surfaces

Vladimir Dokchitser, joint work with Céline Maistret

July 10, 2018

Vladimir Dokchitser **[Parity of ranks of abelian surfaces](#page-42-0)** July 10, 2018 1/15

4 日下

 QQ

 A/K (principally polarized) abelian variety over a number field.

$A(K) \simeq \mathbb{Z}^{rk_{A/K}} \oplus A(K)_{tors}.$

Assuming finiteness of III, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of all semistable[∗] principally polarized

 Ω

イロト イ母 トイヨ トイヨト

 A/K (principally polarized) abelian variety over a number field.

Mordell-Weil Theorem

$$
A(K) \simeq \mathbb{Z}^{rk_{A/K}} \oplus A(K)_{tors}.
$$

Assuming finiteness of III, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of all semistable[∗] principally polarized

 QQQ

イロト イ母 トイヨ トイヨト

 A/K (principally polarized) abelian variety over a number field.

Mordell-Weil Theorem

$$
A(K) \simeq \mathbb{Z}^{rk_{A/K}} \oplus A(K)_{tors}.
$$

Theorem 1 (DM)

Assuming finiteness of III, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of all semistable[∗] principally polarized abelian surfaces.

 QQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

Parity conjecture

Hasse-Weil conjecture and functional equation

 $L(A/K, s)$ has an analytic continuation to $\mathbb C$ and satisfies

$$
L^*(A/K, s) = w_{A/K} L^*(A/K, 2-s),
$$

with $w_{A/K} = \prod_{v} w_v$ and $w_v(A/K_v) \in \{\pm 1\}$ the *local root numbers*.

$$
ord_{s=1}L(A/K,s)=rk_{A/K}.
$$

$$
rk_{A/K} \equiv \sum r_v(A/K_v) \mod 2, \qquad (-1)^{r_v} = w_v.
$$

 299

イロト イ部 トメ ヨ トメ ヨト

Parity conjecture

Hasse-Weil conjecture and functional equation

 $L(A/K, s)$ has an analytic continuation to $\mathbb C$ and satisfies

$$
L^*(A/K, s) = w_{A/K} L^*(A/K, 2-s),
$$

with $w_{A/K} = \prod_{v} w_v$ and $w_v(A/K_v) \in \{\pm 1\}$ the *local root numbers*.

Birch and Swinnerton-Dyer conjecture

$$
ord_{s=1}L(A/K,s)=rk_{A/K}.
$$

$$
rk_{A/K} \equiv \sum r_v(A/K_v) \mod 2, \qquad (-1)^{r_v} = w_v.
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Parity conjecture

Hasse-Weil conjecture and functional equation

 $L(A/K, s)$ has an analytic continuation to $\mathbb C$ and satisfies

$$
L^*(A/K, s) = w_{A/K} L^*(A/K, 2-s),
$$

with $w_{A/K} = \prod_{v} w_v$ and $w_v(A/K_v) \in \{\pm 1\}$ the *local root numbers*.

Birch and Swinnerton-Dyer conjecture

$$
ord_{s=1}L(A/K, s)=rk_{A/K}.
$$

Parity conjecture

$$
rk_{A/K} \equiv \sum_{v} r_{v}(A/K_{v}) \mod 2, \qquad (-1)^{r_{v}} = w_{v}.
$$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Example : $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$.

E has good reduction at $p \neq 5, 13 \implies r_p = 0$ for $p \neq 5, 13$. E has split multiplicative reduction at $p = 5, 13 \implies r_5 = r_{13} = 1$. Parity Conj. \implies $rk_{E/\mathbb{Q}} \equiv r_5 + r_{13} + r_\infty = 1 \mod 2. \implies E(\mathbb{Q})$ infinite.

Parity of $rk_{A_d/Q}$ for quadratic twists A_d depend on d mod N for some N. If dim A is odd, half the twists have even rank, and half odd.

All A/\mathbb{Q} have even rank over $\mathbb{Q}(i,\sqrt{2})$ 17).

 $E: y^2 + y = x^3 + x^2 + x$ has positive rank over $\mathbb{Q}(\sqrt[3]{m})$ for all m.

 Ω

イロト イ押ト イヨト イヨト

Example : $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$. E has good reduction at $p \neq 5, 13 \implies r_p = 0$ for $p \neq 5, 13$. E has split multiplicative reduction at $p = 5, 13 \implies r_5 = r_{13} = 1$. Parity Conj. \implies $rk_{F/\mathbb{Q}} \equiv r_5 + r_{13} + r_\infty = 1$ mod 2. $\implies E(\mathbb{Q})$ infinite.

Parity of $rk_{A_d/Q}$ for quadratic twists A_d depend on d mod N for some N. If dim A is odd, half the twists have even rank, and half odd.

All A/\mathbb{Q} have even rank over $\mathbb{Q}(i,\sqrt{2})$ 17).

 $E: y^2 + y = x^3 + x^2 + x$ has positive rank over $\mathbb{Q}(\sqrt[3]{m})$ for all m.

 Ω

KONKAPIK KENYEN E

Example : $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$. E has good reduction at $p \neq 5, 13 \implies r_p = 0$ for $p \neq 5, 13$. E has split multiplicative reduction at $p = 5, 13 \implies r_5 = r_{13} = 1$. Parity Conj. \implies $rk_{F/\mathbb{Q}} \equiv r_5 + r_{13} + r_\infty = 1$ mod 2. $\implies E(\mathbb{Q})$ infinite.

Parity of $rk_{A_d/Q}$ for quadratic twists A_d depend on d mod N for some N. If dim A is odd, half the twists have even rank, and half odd.

All A/\mathbb{Q} have even rank over $\mathbb{Q}(i,\sqrt{2})$ 17).

 $E: y^2 + y = x^3 + x^2 + x$ has positive rank over $\mathbb{Q}(\sqrt[3]{m})$ for all m.

 Ω

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

Example : $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$. E has good reduction at $p \neq 5, 13 \implies r_p = 0$ for $p \neq 5, 13$. E has split multiplicative reduction at $p = 5, 13 \implies r_5 = r_{13} = 1$. Parity Conj. \implies $rk_{E/\mathbb{Q}} \equiv r_5 + r_{13} + r_\infty = 1 \mod 2. \implies E(\mathbb{Q})$ infinite.

Parity of $rk_{A_d/0}$ for quadratic twists A_d depend on d mod N for some N. If dim A is odd, half the twists have even rank, and half odd.

All A/\mathbb{Q} have even rank over $\mathbb{Q}(i,\sqrt{2})$ 17).

 $E: y^2 + y = x^3 + x^2 + x$ has positive rank over $\mathbb{Q}(\sqrt[3]{m})$ for all m.

 QQ

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow B$

Example : $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$. E has good reduction at $p \neq 5, 13 \implies r_p = 0$ for $p \neq 5, 13$. E has split multiplicative reduction at $p = 5, 13 \implies r_5 = r_{13} = 1$. Parity Conj. \implies $rk_{E/\mathbb{Q}} \equiv r_5 + r_{13} + r_\infty = 1 \mod 2. \implies E(\mathbb{Q})$ infinite.

Parity conjecture consequence 1:

Parity of $rk_{A_d/Q}$ for quadratic twists A_d depend on d mod N for some N. If dim A is odd, half the twists have even rank, and half odd.

All A/\mathbb{Q} have even rank over $\mathbb{Q}(i,\sqrt{2})$ 17).

 $E: y^2 + y = x^3 + x^2 + x$ has positive rank over $\mathbb{Q}(\sqrt[3]{m})$ for all m.

 QQQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

Example : $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$. E has good reduction at $p \neq 5, 13 \implies r_p = 0$ for $p \neq 5, 13$. E has split multiplicative reduction at $p = 5, 13 \implies r_5 = r_{13} = 1$. Parity Conj. \implies $rk_{E/\mathbb{Q}} \equiv r_5 + r_{13} + r_\infty = 1 \mod 2. \implies E(\mathbb{Q})$ infinite.

Parity conjecture consequence 1:

Parity of $rk_{A_d/Q}$ for quadratic twists A_d depend on d mod N for some N. If dim A is odd, half the twists have even rank, and half odd.

Parity conjecture consequence 2:

All A/\mathbb{Q} have even rank over $\mathbb{Q}(i,\sqrt{2})$ 17).

 $E: y^2 + y = x^3 + x^2 + x$ has positive rank over $\mathbb{Q}(\sqrt[3]{m})$ for all m.

KOD KARD KED KED B YOUR

Example : $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$. E has good reduction at $p \neq 5, 13 \implies r_p = 0$ for $p \neq 5, 13$. E has split multiplicative reduction at $p = 5, 13 \implies r_5 = r_{13} = 1$. Parity Conj. \implies $rk_{E/\mathbb{Q}} \equiv r_5 + r_{13} + r_\infty = 1 \mod 2. \implies E(\mathbb{Q})$ infinite.

Parity conjecture consequence 1:

Parity of $rk_{A_d/Q}$ for quadratic twists A_d depend on d mod N for some N. If dim A is odd, half the twists have even rank, and half odd.

Parity conjecture consequence 2:

All A/\mathbb{Q} have even rank over $\mathbb{Q}(i,\sqrt{2})$ 17).

Parity conjecture consequence 3:

 $E: y^2 + y = x^3 + x^2 + x$ has positive rank over $\mathbb{Q}(\sqrt[3]{m})$ for all m.

KOD KARD KED KED B YOUR

Theorem 2 (DM)

There is an invariant $r' \in \{0,1\}$ for pp abelian surfaces over local fields, such that for all pp abelian surfaces over number fields A/K

$$
rk_{A/K} \equiv \sum_{v} r'(A/K_v) \mod 2,
$$

provided $\text{III}_{A/F}$ is finite for $F = K(A[2])$.

 QQ

Sketch of proof

 299

イロト イ部 トメ ヨ トメ ヨト

Theorem (Cassels–Tate)

Assuming ${\rm III}_{A/K}$ finite, if $\Phi:A\to A'$ is an isogeny of ppAVs, then $\frac{|\text{III}_{A/K}|\cdot \text{Reg}_{A/K}\cdot \prod_v c_v(A/K)}{|A(K)\text{tors}|^2}$ = $\frac{|\text{III}_{A'/K}|\cdot \text{Reg}_{A'/K}\cdot \prod_v c_v(A'/K)|}{|A'(K)\text{tors}|^2}$ $|A(K)_{tors}|^2$ $|A'(K)_{tors}|^2$.

Example: $E/Q : y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$, admits a 2-isogeny. $c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad c_\infty = 2c_\infty'.$ $\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^2 \prod c_V}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^2 \prod c_V'}$ $\frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\mathrm{tors}}|^2\prod c_{\mathrm{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\mathrm{tors}}|^2\prod c_{\mathrm{v}}'} = \frac{\prod c_{\mathrm{v}}}{\prod c_{\mathrm{v}}'}\cdot \square = \frac{2}{4}$ $\frac{2}{4} \cdot \square \neq 1.$ \Rightarrow E has a point of infinite order.

In fact, we can deduce that the rank is odd:

Theorem (Cassels–Tate)

Assuming ${\rm III}_{A/K}$ finite, if $\Phi:A\to A'$ is an isogeny of ppAVs, then $|\mathrm{III}_{A/K}|\!\cdot \!Re \mathrm{g}_{A/K} \!\cdot \! \prod_{v} \mathrm{c}_v(A/K)$ $\frac{|\mathrm{Reg}_{A/K}\cdot\prod_{\mathcal{V}}c_{\mathcal{V}}(A/K)|}{|A(K)_{tors}|^2}\;\;=\;\;\frac{|\mathrm{III}_{A'/K}|\cdot \text{Reg}_{A'/K}\cdot\prod_{\mathcal{V}}c_{\mathcal{V}}(A'/K)|}{|A'(K)_{tors}|^2}$ $|A'(K)_{tors}|^2$.

Example: $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$, admits a 2-isogeny.

 $c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad c_\infty = 2c_\infty'.$ $\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^2 \prod c_V}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^2 \prod c_V'}$ $\frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\mathrm{tors}}|^2\prod c_{\mathrm{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\mathrm{tors}}|^2\prod c_{\mathrm{v}}'} = \frac{\prod c_{\mathrm{v}}}{\prod c_{\mathrm{v}}'}\cdot \square = \frac{2}{4}$ $\frac{2}{4} \cdot \square \neq 1.$

 \Rightarrow E has a point of infinite order.

In fact, we can deduce that the rank is odd:

Theorem (Cassels–Tate)

Assuming ${\rm III}_{A/K}$ finite, if $\Phi:A\to A'$ is an isogeny of ppAVs, then $|\mathrm{III}_{A/K}|\!\cdot \!Re \mathrm{g}_{A/K} \!\cdot \! \prod_{v} \mathrm{c}_v(A/K)$ $\frac{|\mathrm{Reg}_{A/K}\cdot\prod_{\mathcal{V}}c_{\mathcal{V}}(A/K)|}{|A(K)_{tors}|^2}\;\;=\;\;\frac{|\mathrm{III}_{A'/K}|\cdot \text{Reg}_{A'/K}\cdot\prod_{\mathcal{V}}c_{\mathcal{V}}(A'/K)|}{|A'(K)_{tors}|^2}$ $|A'(K)_{tors}|^2$.

Example: $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$, admits a 2-isogeny. $c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad c_\infty = 2c_\infty'.$ $\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{tors}|^2 \prod c_V}{|\mathrm{III}(E')||E(\mathbb{Q})_{tors}|^2 \prod c_V'}$ $\frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\mathrm{tors}}|^2\prod c_{\mathrm{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\mathrm{tors}}|^2\prod c_{\mathrm{v}}'} = \frac{\prod c_{\mathrm{v}}}{\prod c_{\mathrm{v}}'}\cdot \square = \frac{2}{4}$ $\frac{2}{4} \cdot \square \neq 1.$ \Rightarrow E has a point of infinite order.

In fact, we can deduce that the rank is odd:

Theorem (Cassels–Tate)

Assuming ${\rm III}_{A/K}$ finite, if $\Phi:A\to A'$ is an isogeny of ppAVs, then $|\mathrm{III}_{A/K}|\!\cdot \!Re \mathrm{g}_{A/K} \!\cdot \! \prod_{v} \mathrm{c}_v(A/K)$ $\frac{|\mathrm{Reg}_{A/K}\cdot\prod_{\mathcal{V}}c_{\mathcal{V}}(A/K)|}{|A(K)_{\mathit{tors}}|^2} \;\;=\;\; \frac{|\mathrm{III}_{A'/K}| \cdot \mathit{Reg}_{A'/K} \cdot \prod_{\mathcal{V}}c_{\mathcal{V}}(A'/K)|}{|A'(K)_{\mathit{tors}}|^2}$ $|A'(K)_{tors}|^2$.

Example: $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$, admits a 2-isogeny. $c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad c_\infty = 2c_\infty'.$ $\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\textit{tors}}|^2 \prod c_{\textit{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\textit{tors}}|^2 \prod c'_{\textit{v}}}$ $\frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\mathrm{tors}}|^2 \prod c_{\mathrm{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\mathrm{tors}}|^2 \prod c'_{\mathrm{v}}} = \frac{\prod c_{\mathrm{v}}}{\prod c'_{\mathrm{v}}} \cdot \square = \frac{2}{4}$ $\frac{2}{4} \cdot \square \neq 1$.

 \Rightarrow E has a point of infinite order. In fact, we can deduce that the rank is odd:

Theorem (Cassels–Tate)

Assuming ${\rm III}_{A/K}$ finite, if $\Phi:A\to A'$ is an isogeny of ppAVs, then $|\mathrm{III}_{A/K}|\!\cdot \!Re \mathrm{g}_{A/K} \!\cdot \! \prod_{v} \mathrm{c}_v(A/K)$ $\frac{|\mathrm{Reg}_{A/K}\cdot\prod_{\mathcal{V}}c_{\mathcal{V}}(A/K)|}{|A(K)_{\mathit{tors}}|^2} \;\;=\;\; \frac{|\mathrm{III}_{A'/K}| \cdot \mathit{Reg}_{A'/K} \cdot \prod_{\mathcal{V}}c_{\mathcal{V}}(A'/K)|}{|A'(K)_{\mathit{tors}}|^2}$ $|A'(K)_{tors}|^2$.

Example: $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$, admits a 2-isogeny. $c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad c_\infty = 2c_\infty'.$ $\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\textit{tors}}|^2 \prod c_{\textit{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\textit{tors}}|^2 \prod c'_{\textit{v}}}$ $\frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\mathrm{tors}}|^2 \prod c_{\mathrm{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\mathrm{tors}}|^2 \prod c'_{\mathrm{v}}} = \frac{\prod c_{\mathrm{v}}}{\prod c'_{\mathrm{v}}} \cdot \square = \frac{2}{4}$ $\frac{2}{4} \cdot \square \neq 1$.

 \Rightarrow E has a point of infinite order.

In fact, we can deduce that the rank is odd:

Theorem (Cassels–Tate)

Assuming ${\rm III}_{A/K}$ finite, if $\Phi:A\to A'$ is an isogeny of ppAVs, then $|\mathrm{III}_{A/K}|\!\cdot \!Re \mathrm{g}_{A/K} \!\cdot \! \prod_{v} \mathrm{c}_v(A/K)$ $\frac{|\mathrm{Reg}_{A/K}\cdot\prod_{\mathcal{V}}c_{\mathcal{V}}(A/K)|}{|A(K)_{\mathit{tors}}|^2} \;\;=\;\; \frac{|\mathrm{III}_{A'/K}| \cdot \mathit{Reg}_{A'/K} \cdot \prod_{\mathcal{V}}c_{\mathcal{V}}(A'/K)|}{|A'(K)_{\mathit{tors}}|^2}$ $|A'(K)_{tors}|^2$.

Example: $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$, admits a 2-isogeny. $c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad c_\infty = 2c_\infty'.$ $\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\textit{tors}}|^2 \prod c_{\textit{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\textit{tors}}|^2 \prod c'_{\textit{v}}}$ $\frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\mathrm{tors}}|^2 \prod c_{\mathrm{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\mathrm{tors}}|^2 \prod c'_{\mathrm{v}}} = \frac{\prod c_{\mathrm{v}}}{\prod c'_{\mathrm{v}}} \cdot \square = \frac{2}{4}$ $\frac{2}{4} \cdot \square \neq 1$.

 \Rightarrow E has a point of infinite order.

In fact, we can deduce that the rank is odd:

Theorem (Cassels–Tate)

Assuming ${\rm III}_{A/K}$ finite, if $\Phi:A\to A'$ is an isogeny of ppAVs, then $|\mathrm{III}_{A/K}|\!\cdot \!Re \mathrm{g}_{A/K} \!\cdot \! \prod_{v} \mathrm{c}_v(A/K)$ $\frac{|\mathrm{Reg}_{A/K}\cdot\prod_{\mathcal{V}}c_{\mathcal{V}}(A/K)|}{|A(K)_{\mathit{tors}}|^2} \;\;=\;\; \frac{|\mathrm{III}_{A'/K}| \cdot \mathit{Reg}_{A'/K} \cdot \prod_{\mathcal{V}}c_{\mathcal{V}}(A'/K)|}{|A'(K)_{\mathit{tors}}|^2}$ $\frac{\log_{A'/R} \prod_{V} C_{V}(V'/V')}{|A'(K)_{tors}|^2}$.

Example: $E/\mathbb{Q}: y^2 + xy = x^3 - x$, $\Delta_E = 5 \cdot 13$, admits a 2-isogeny. $c_5 = c_{13} = 1, \quad c_5' = c_{13}' = 2, \quad c_\infty = 2c_\infty'.$ $\Rightarrow \frac{Reg_E}{Reg_{E'}} = \frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\textit{tors}}|^2 \prod c_{\textit{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\textit{tors}}|^2 \prod c'_{\textit{v}}}$ $\frac{|\mathrm{III}(E)||E'(\mathbb{Q})_{\mathrm{tors}}|^2 \prod c_{\mathrm{v}}}{|\mathrm{III}(E')||E(\mathbb{Q})_{\mathrm{tors}}|^2 \prod c'_{\mathrm{v}}} = \frac{\prod c_{\mathrm{v}}}{\prod c'_{\mathrm{v}}} \cdot \square = \frac{2}{4}$ $\frac{2}{4} \cdot \square \neq 1$.

 \Rightarrow E has a point of infinite order.

In fact, we can deduce that the rank is odd:

Corollary

If Φ is an isogeny of degree p such that $\Phi^*\Phi=[p]$ then $\frac{Reg_{A/K}}{Reg_{A'/K}}=p^{rk_{A/K}}\cdot \Box$. In particular, r $\mathsf{k}_{A/K} = \mathsf{ord}_p \frac{\prod_{\mathsf{k}}}{\prod_{\mathsf{k}}$ \prod c_v $\mathcal{C}'_{\mathsf{v}}$ $+$ ord_p $\frac{|\text{III}_{A/K}[p^{\infty}]|}{\text{III}_{A/\infty}[p^{\infty}]}$ $\frac{|X|}{|\amalg_{A'/K} [p^{\infty}]|}$ mod 2.

Reduction to the case of an isogeny with $\Phi^*\Phi = [2]$

Let A/K be a semistable ppAV over a number field. Let F/K be a finite Galois extension with $III_{A/F}$ finite, $G = Gal(F/K)$. If Parity Conj. holds for A/F^H for all $H \!\leq\! Syl_2G$, then it holds for $A/K.$

Suppose A/K is semistable with $\mathop{\amalg}\nolimits_{A/F}$ finite for $F = K(A[2])$. If the Parity Conjecture holds over subfields of F where A admits an isogeny Φ with $\Phi^*\Phi = [2]$, then it holds for A/K .

 Ω

イロト イ母 トイヨ トイヨト

Reduction to the case of an isogeny with $\Phi^*\Phi = [2]$

Theorem (D^2)

Let A/K be a semistable ppAV over a number field. Let F/K be a finite Galois extension with $\text{III}_{A/F}$ finite, $G = Gal(F/K)$. If Parity Conj. holds for A/F^H for all $H \!\leq\! Syl_2G$, then it holds for $A/K.$

Suppose A/K is semistable with $\mathop{\amalg}\nolimits_{A/F}$ finite for $F = K(A[2])$. If the Parity Conjecture holds over subfields of F where A admits an isogeny Φ with $\Phi^*\Phi = [2]$, then it holds for A/K .

 Ω

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 D F

Reduction to the case of an isogeny with $\Phi^*\Phi = [2]$

Theorem (D^2)

Let A/K be a semistable ppAV over a number field. Let F/K be a finite Galois extension with $\text{III}_{A/F}$ finite, $G = Gal(F/K)$. If Parity Conj. holds for A/F^H for all $H \!\leq\! Syl_2G$, then it holds for $A/K.$

Corollary (D^2)

Suppose A/K is semistable with $\mathop{\rm III}\nolimits_{A/F}$ finite for $F = K(A[2])$. If the Parity Conjecture holds over subfields of F where A admits an isogeny Φ with $\Phi^*\Phi = [2]$, then it holds for A/K .

 QQQ

イ何 トマミト マミト ニヨ

Types of principally polarized abelian surfaces

Theorem (see Gonzales-Guàrdia-Rotger)

Let A/K be a pp abelian surface defined over K. Then either

- \bullet A \simeq E₁ \times E₂.
- \bullet $A \simeq Res_{F/K}E$, or
- \bullet A \simeq Jac(C), where C/K is a smooth curve of genus 2.

In the first two cases, the parity theorem follows from analogous results for elliptic curves.

Types of principally polarized abelian surfaces

Theorem (see Gonzales-Guàrdia-Rotger)

Let A/K be a pp abelian surface defined over K. Then either

- \bullet A \simeq E₁ \times E₂.
- \bullet $A \simeq Res_{F/K}E$, or
- \bullet A \simeq Jac(C), where C/K is a smooth curve of genus 2.

In the first two cases, the parity theorem follows from analogous results for elliptic curves.

III of Jacobians

Theorem (Poonen–Stoll)

Suppose $A = Jac(C)$ with $\mathop{\text{III}}\nolimits_{A/K}$ is finite. Then $|\mathop{\text{III}}\nolimits_{A/K}| = \Box$ iff the number of places v with C/K_v deficient is even (and $2 \cdot \Box$ otherwise).

If $A=Jac(C)$, $\text{III}_{A/K}$ is finite and $\Phi: A \to Jac(C')$ with $\Phi^*\Phi=[2]$, then rk $_{A/K} = \sum$ σ ord₂ $\frac{c_v}{c}$ $m_{\rm V}$ m'_v mod 2,

with $m_v = 2$ if C is deficient at v and $m_v = 1$ otherwise.

For pp abelian surfaces, if $III_{A/K(A[2])}$ is finite, then

$$
rk_{A/K}=\sum\nolimits_{v}r'(A/K_v) \mod 2.
$$

III of Jacobians

Theorem (Poonen–Stoll)

Suppose $A = Jac(C)$ with $\mathop{\text{III}}_{A/K}$ is finite. Then $|\mathop{\text{III}}_{A/K}| = \Box$ iff the number of places v with C/K_v deficient is even (and $2 \cdot \Box$ otherwise).

Theorem

If $A=Jac(C)$, $\text{III}_{A/K}$ is finite and $\Phi: A \to Jac(C')$ with $\Phi^*\Phi=[2]$, then rk $_{A/K}=\sum$ v ord₂ $\frac{c_v}{c_v}$ c'_{v} m_{v} m_{v}' mod 2,

with $m_v = 2$ if C is deficient at v and $m_v = 1$ otherwise.

For pp abelian surfaces, if $III_{A/K(A[2])}$ is finite, then

$$
rk_{A/K}=\sum_{v}r'(A/K_v) \mod 2.
$$

III of Jacobians

Theorem (Poonen–Stoll)

Suppose $A = Jac(C)$ with $\mathop{\text{III}}\nolimits_{A/K}$ is finite. Then $|\mathop{\text{III}}\nolimits_{A/K}| = \Box$ iff the number of places v with C/K_v deficient is even (and $2 \cdot \Box$ otherwise).

Theorem

If $A=Jac(C)$, $\text{III}_{A/K}$ is finite and $\Phi: A \to Jac(C')$ with $\Phi^*\Phi=[2]$, then rk $_{A/K}=\sum$ v ord₂ $\frac{c_v}{c_v}$ c'_{v} m_{v} m_{v}' mod 2,

with $m_v = 2$ if C is deficient at v and $m_v = 1$ otherwise.

Corollary (Theorem 2)

For pp abelian surfaces, if $III_{A/K(A[2])}$ is finite, then

$$
rk_{A/K}=\sum_{v}r'(A/K_v) \mod 2.
$$

Comparison of local terms

Parity conjecture

$$
rk_{A/K}\equiv \sum_{v}r_{v}\mod 2,
$$

Theorem 2

For pp abelian surfaces, if $III_{A/K(A[2])}$ is finite, then

$$
rk_{A/K}=\sum_{v}r'_v \mod 2.
$$

Problem: $r_v \neq r'_v$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Comparison of local terms

Parity conjecture

$$
rk_{A/K}\equiv \sum_{v}r_{v}\mod 2,
$$

Theorem 2

For pp abelian surfaces, if $III_{A/K(A[2])}$ is finite, then

$$
rk_{A/K}=\sum_{v}r'_v \mod 2.
$$

Problem: $r_v \neq r'_v$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

Arithmetic of the Jacobian of a genus 2 curve

$$
C/K: y^2 = f(x), \quad \deg(f) = 6.
$$

Points on $Jac(C) \leftrightarrow [P,Q]$, $P, Q \in C(\overline{K})$, Galois stable pair.

Adding points on $Jac(C)$: Draw $y = cubic$ through P, P', Q, Q' . $[P, P'] + [Q, Q'] + [S, S'] = 0,$ $-[S, S'] = [R, R'].$

イロメ イ母メ イヨメ イヨ

2 torsion: $[T_i, T_k]$ where $T_i = (x_i, 0)$.

 $Jac(C)$ admits an isogeny Φ with $\Phi\Phi^*=[2] \iff Gal(f) \leq C_2^3 \rtimes S_3.$

Arithmetic of the Jacobian of a genus 2 curve

$$
C/K: y^2 = f(x), \quad \deg(f) = 6.
$$

Points on $Jac(C) \leftrightarrow [P,Q]$, $P, Q \in C(\overline{K})$, Galois stable pair.

Adding points on $Jac(C)$: Draw $y = cubic$ through P, P', Q, Q' . $[P, P'] + [Q, Q'] + [S, S'] = 0,$ $-[S, S'] = [R, R'].$

イロト イ押ト イヨト イヨト

2 torsion: $[T_i, T_k]$ where $T_i = (x_i, 0)$.

 $Jac(C)$ admits an isogeny Φ with $\Phi\Phi^*=[2] \iff Gal(f) \leq C_2^3 \rtimes S_3.$

Arithmetic of the Jacobian of a genus 2 curve

$$
C/K: y^2 = f(x), \quad \deg(f) = 6.
$$

Points on $Jac(C) \leftrightarrow [P,Q]$, $P, Q \in C(\overline{K})$, Galois stable pair.

Adding points on $Jac(C)$: Draw $y = cubic$ through P, P', Q, Q' . $[P, P'] + [Q, Q'] + [S, S'] = 0,$ $-[S, S'] = [R, R'].$

イロト イ押ト イヨト イヨト

2 torsion: $[T_i, T_k]$ where $T_i = (x_i, 0)$.

 $Jac(C)$ admits an isogeny Φ with $\Phi\Phi^*=[2] \iff Gal(f) \leq C_2^3 \rtimes S_3$.

Local discrepancy in terms of $f(x)$

For C : $y^2=f(x)$ with deg $f(x)=6$ and $Gal(f)\leq C_2\times D_4$ $(=$ Syl $_2$ S $_6$), Maistret defined explicit $Gal(f)$ -invariant polynomials I_{20} , I_{21} , I_{22} , I_{40} , I_{41} , I_{42} , I_{43} , I_{44} , I_{45} , I_{60} , I_{80} , ℓ in the roots of $f(x)$ and

 $r_{\rm v} = \textit{ord}_2(\frac{c_v m_v}{c'_v m'_v}) + e_v \mod 2$, where

is a product of Hilbert symbols at v.

By the product formula $\prod_{\nu}(-1)^{e_{\nu}}=1$, so $\sum_{\nu}e_{\nu}$ is even. Hence Maistret's Conjecture \implies $\mathit{rk}_{A/K}=\sum r_{\mathsf{v}}$ (Parity Conjecture), provided III is finite.

 QQ

イロメ イ部メ イミメ イミメー

Local discrepancy in terms of $f(x)$

For C : $y^2=f(x)$ with deg $f(x)=6$ and $Gal(f)\leq C_2\times D_4$ $(=$ Syl $_2$ S $_6$), Maistret defined explicit $Gal(f)$ -invariant polynomials I_{20} , I_{21} , I_{22} , I_{40} , I_{41} , I_{42} , I_{43} , I_{44} , I_{45} , I_{60} , I_{80} , ℓ in the roots of $f(x)$ and

Conjecture (Maistret)

 $r_{\rm v} = \textit{ord}_2(\frac{c_\mathrm{v} m_\mathrm{v}}{c'_\mathrm{v} m'_\mathrm{v}}) + e_\mathrm{v} \mod 2$, where

 $(-1)^{e_V}$ = (-1, I₂₂I₄₁ I₄₃I₆₀)(I₂₀, -1₄₀I₄₄)(I₄₀, $\ell I_{60}I_{43}$)(c, I₂₃I₄₄I₈₀)(I₂₃,I₄₁)

 $(I_{45},-\ell_2I_{21})(I_{44},2I_{22}I_{42}I_{43})(I_{80},-2I_{41}I_{42}I_{60})(I_{42},-I_{60}I_{43}),$

is a product of Hilbert symbols at v.

By the product formula $\prod_{\nu}(-1)^{e_{\nu}}=1$, so $\sum_{\nu}e_{\nu}$ is even. Hence Maistret's Conjecture \implies $\mathit{rk}_{A/K}=\sum r_{\mathsf{v}}$ (Parity Conjecture), provided III is finite.

 QQQ

イロト 不優 トイミト イミト 一番

Local discrepancy in terms of $f(x)$

For C : $y^2=f(x)$ with deg $f(x)=6$ and $Gal(f)\leq C_2\times D_4$ $(=$ Syl $_2$ S $_6$), Maistret defined explicit $Gal(f)$ -invariant polynomials I_{20} , I_{21} , I_{22} , I_{40} , I_{41} , I_{42} , I_{43} , I_{44} , I_{45} , I_{60} , I_{80} , ℓ in the roots of $f(x)$ and

Conjecture (Maistret)

$$
r_{v} = ord_2(\tfrac{c_v m_v}{c'_v m'_v}) + e_v \mod 2, \text{ where}
$$

 $(-1)^{e_V}$ = (-1, I₂₂I₄₁ I₄₃I₆₀)(I₂₀, -1₄₀I₄₄)(I₄₀, $\ell I_{60}I_{43}$)(c, I₂₃I₄₄I₈₀)(I₂₃,I₄₁)

$$
(I_{45},-\ell I_{22}I_{21})(I_{44},2I_{22}I_{42}I_{43})(I_{80},-2I_{41}I_{42}I_{60})(I_{42},-I_{60}I_{43}),
$$

is a product of Hilbert symbols at v.

By the product formula $\prod_{\mathsf{\nu}}(-1)^{\mathsf{e}_\mathsf{\nu}}=1$, so $\sum_{\mathsf{\nu}}\mathsf{e}_\mathsf{\nu}$ is even. Hence Maistret's Conjecture \implies $\mathit{rk}_{A/K}=\sum r_{\mathsf{v}}$ (Parity Conjecture), provided III is finite.

 QQ

イロト イ母 トイヨト イヨト・ヨー

Theorem 3 (DM)

Suppose $\mathsf{C}/\mathsf{K}_\mathsf{v} : y^2 = f(\mathsf{x})$ and $\mathsf{Gal}(f) \leq \mathsf{C}_2 \times D_4.$ The Conjecture is true if either $v|\infty$, C is semistable and $v \nmid 2$, or if C is "lovely" and $v|2$.

Let A/K be a pp semistable * abelian surface with $\text{III}_{A/K(A[2])}.$ Then the Parity conjecture holds for A/K , that is $\mathit{rk}_{A/K} = \sum r_{\mathsf{v}} \mod 2.$

Maistret's conjecture is a purely local statement. Proof of 3: classify all reduction types of C/K_v and describe root numbers, Tamagawa numbers and deficiency in terms of the roots of $f(x)$. $($ = "Cluster" machinery for hyperelliptic curves by $D²M+Adam Morgan)$.

 Ω

イロト イ押ト イヨト イヨト

Theorem 3 (DM)

Suppose $\mathsf{C}/\mathsf{K}_\mathsf{v} : y^2 = f(\mathsf{x})$ and $\mathsf{Gal}(f) \leq \mathsf{C}_2 \times D_4.$ The Conjecture is true if either $v|\infty$, C is semistable and $v \nmid 2$, or if C is "lovely" and $v|2$.

Corollary (Theorem 1)

Let A/K be a pp semistable * abelian surface with $\text{III}_{A/K(A[2])}.$ Then the Parity conjecture holds for A/K , that is $\mathit{rk}_{A/K} = \sum r_{\mathsf{v}} \mod 2.$

Maistret's conjecture is a purely local statement. Proof of 3: classify all reduction types of C/K_v and describe root numbers, Tamagawa numbers and deficiency in terms of the roots of $f(x)$. (="Cluster" machinery for hyperelliptic curves by $D^2M + \text{Adam Morgan}$).

 Ω

KONKAPIK KENYEN E

Theorem 3 (DM)

Suppose $\mathsf{C}/\mathsf{K}_\mathsf{v} : y^2 = f(\mathsf{x})$ and $\mathsf{Gal}(f) \leq \mathsf{C}_2 \times D_4.$ The Conjecture is true if either $v|\infty$, C is semistable and $v \nmid 2$, or if C is "lovely" and $v|2$.

Corollary (Theorem 1)

Let A/K be a pp semistable * abelian surface with $\text{III}_{A/K(A[2])}.$ Then the Parity conjecture holds for A/K , that is $\mathit{rk}_{A/K} = \sum r_{\mathsf{v}} \mod 2.$

Maistret's conjecture is a purely local statement. Proof of 3: classify all reduction types of C/K_v and describe root numbers, Tamagawa numbers and deficiency in terms of the roots of $f(x)$. (= "Cluster" machinery for hyperelliptic curves by D^2M+A dam Morgan).

 QQQ

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$

Thank you for your attention

 \leftarrow \Box

× 一 \rightarrow ×. ∍ × \mathcal{A} 重 J.