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The modular function j

The modular function j(z) is the unique holomorphic function on
H := {z ∈ C, Im(z) > 0},

satisfying

j(z + 1) = j(z), j(−1/z) = j(z),

j(q) =
1

q
+ 744 + 196884q + · · · with q = e2πiz .

This function crops up in many parts of mathematics: complex
analysis (proof of the uniformisation theorem), elliptic curves and
number theory, finite group theory (monstrous moonshine), etc.
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Special values, or singular moduli

A singular modulus is a special value of j at a quadratic imaginary
argument (CM point) in H.

The theory of complex multiplication asserts that these values are
algebraic integers, and enjoy many remarkable properties.

Examples:

j(i) = 1728; j
(

1+
√
−3

2

)
= 0; j

(
1+
√
−7

2

)
= −3375.

j
(

1+
√
−23

2

)
= w , where

w3 + 3491750w2 − 5151296875w + 12771880859375 = 0.

It generates an interesting cubic extension of Q(
√
−23).
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Gauss composition and class groups

For τ quadratic, there is a unique primitive integral binary
quadratic form F (x , y) = Ax2 + Bxy + Cy2 satisfying A > 0 and
F (τ, 1) = 0.

D := B2 − 4AC is called the discriminant of τ .

The set of SL2(Z)-equivalence classes of primitive integral binary
quadratic forms of discriminant D forms a group under Gauss’s
composition law, denoted GD : the class group of discriminant D.

Class groups have been intensely studied since the time of Gauss,
and are fundamental objects in number theory.
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Abelian extensions and Kronecker’s theorem

The class group GD measures the failure of the principle of unique
factorisation in the ring of integers of K = Q(

√
D),

and also arises
in the study of abelian extensions of K :

If D is a fundamental discriminant, the group GD is canonically
identified with Gal(HD/K ), where HD is the Hilbert class field
associated to D.

Theorem (Kronecker)

For quadratic τ ∈ H of fundamental discriminant D < 0, the
singular modulus j(τ) is an algebraic integer in HD , and generates
this field.
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Differences of singular moduli and their factorisations

Gross, Zagier (1984). For all τ1, τ2 quadratic imaginary,

the
quantity

J(τ1, τ2) := j(τ1)− j(τ2)

is a smooth algebraic integer with an explicit factorisation.

The norm of J(τ1, τ2) to Z is divisible only by (large powers of)
small primes.

The equation

J(τ1, τ2) + J(τ2, τ3) = J(τ1, τ3)

expresses a “powerful” number as a sum of two “powerful”
numbers.
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An example

D = −4 and −163 have class number one,

and,

j(i) = 1728 = 26 ·33, j
(

1+
√
−163
2

)
= −218 ·33 ·53 ·233 ·293,

J

(
1 +
√
−163

2
, i

)
= −26 · 36 · 72 · 112 · 192 · 1272 · 163,

218 · 33 · 53 · 233 · 293 + 2633 = 26 · 36 · 72 · 112 · 192 · 1272 · 163,

212 · 53 · 233 · 293 + 1 = 33 · 72 · 112 · 192 · 1272 · 163.

Similar examples arise from any J(τ1, τ2) for which j(τ1) and j(τ2)
are integers.
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Why doesn’t complex multiplication contradict the abc conjecture?
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The Gauss class number problem

Theorem (Gauss; Heilbronn; Baker, Heegner, Stark)

There are finitely many D < 0 with for which GD = {1}, namely

−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43− 67,−163.

Hence there are finitely many quadratic imaginary τ for which
j(τ) ∈ Z.

The abc conjecture is saved!

Granville, Stark (2000): A strong form of the abc conjecture
implies the non-existence of Siegel zeroes for L-functions attached
to odd Dirichlet characters.
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How to disprove the abc conjecture ;-)

Real quadratic discriminants behave differently from negative ones.

Conjecture (Gauss)

There are infinitely many D > 0 for which GD = {1}.

Empirically, it seems like the majority of prime D > 0–somewhat
over 3/4– have this “class number one” property.

One might disprove the abc conjecture by extending the definition
of J(τ1, τ2) so that it can be evaluated at real quadratic, and not
just imaginary quadratic, arguments!
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The motivating question

Let ϕ :=
(

1+
√

5
2

)
be the golden ratio.

Question. What is j(ϕ)....?

Answer. It depends on p.

Here, p is a prime congruent to 2 or 3 modulo 5.

The rest of the talk will try to explain this cryptic answer.



The motivating question

Let ϕ :=
(

1+
√

5
2

)
be the golden ratio.

Question. What is j(ϕ)....?

Answer. It depends on p.

Here, p is a prime congruent to 2 or 3 modulo 5.

The rest of the talk will try to explain this cryptic answer.



The motivating question

Let ϕ :=
(

1+
√

5
2

)
be the golden ratio.

Question. What is j(ϕ)....?

Answer.

It depends on p.

Here, p is a prime congruent to 2 or 3 modulo 5.

The rest of the talk will try to explain this cryptic answer.



The motivating question

Let ϕ :=
(

1+
√

5
2

)
be the golden ratio.

Question. What is j(ϕ)....?

Answer. It depends on p.

Here, p is a prime congruent to 2 or 3 modulo 5.

The rest of the talk will try to explain this cryptic answer.



The motivating question

Let ϕ :=
(

1+
√

5
2

)
be the golden ratio.

Question. What is j(ϕ)....?

Answer. It depends on p.

Here, p is a prime congruent to 2 or 3 modulo 5.

The rest of the talk will try to explain this cryptic answer.



The motivating question

Let ϕ :=
(

1+
√

5
2

)
be the golden ratio.

Question. What is j(ϕ)....?

Answer. It depends on p.

Here, p is a prime congruent to 2 or 3 modulo 5.

The rest of the talk will try to explain this cryptic answer.



p-adic methods

Imaginary and real quadratic fields differ in that their usual
completions are isomorphic to C and R respectively.

After fixing a prime p, one can consider the p-adic distance,
whereby two rational numbers are decreed to be close if their
difference is divisible by a high power of p.

The completion of Q with respect to this new metric is called the
field Qp of p-adic numbers.

The field Qp plays the role of R, while the counterpart of C is

Cp := ̂̄Qp.
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Drinfeld’s p-adic upper-half plane

Likewise, the complex upper half plane H with its action of SL2(R)
by Möbius transformations, admits a good p-adic analogue.

Drinfeld. The p-adic analytic space Hp := P1(Cp)− P1(Qp) is
called the p-adic upper half-plane. It is analogous to the union

H+ ∪H− = P1(C)− P1(R)

of two copies of the Poincaré upper half plane.

Tate, Mumford: a rigid analytic function on Hp is a Cp-valued
function whose restriction to every good (“affinoid”) subset S is a
uniform limit of rational functions having poles outside of S .

This is the proper generalisation of holomorphic functions on H.
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RM points

Unlike its complex counterpart, Hp contains plenty of real
quadratic arguments.

E.g., the golden ratio belongs to H2, H3, H5, H7, H13 . . ., (but
not to H11, H19, . . .).

Definition

A point on τ ∈ Hp is called a real multiplication (RM) point if it
belongs to Hp ∩ K for some real quadratic field K .

Goal: Define a “convincing” p-adic avatar of j which can be
meaningfully evaluated at RM points, leading to singular moduli
for real quadratic τ ∈ Hp.
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Rigid meromorphic functions on Hp

Question: What is this p-adic analogue of the j-function?

Classical setting: j(z) is an SL2(Z)-invariant meromorphic
function on H.

The p-adic setting: A rigid meromorphic function is a ratio of
rigid analytic functions.

Let M := the ring of rigid meromorphic functions on Hp.
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SL2(Z)-invariant functions

First futile attempt: Study rigid meromorphic functions that are
invariant under SL2(Z) ⊂ SL2(Qp).

This is a futile, because: The actions of SL2(Z) on Hp is not
discrete in the p-adic topology. The subgroup of translations
z 7→ z + n, with n ∈ Z, already has non-discrete orbits!

There are no non-constant SL2(Z)-invariant elements in M:

H0(SL2(Z),M) = Cp.
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The p-modular group

In fact, it turns out to be profitable to consider functions that have
good transformation properties under an even larger subgroup of
SL2(Qp):

the p-modular group

Γ := SL2(Z[1/p]).

This does nothing to alleviate the problems of the previous slide:

H0(Γ,M) = Cp.
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Rigid meromorphic modular cocycles

Let M× be the multiplicative group of non-zero elements of M.

Key idea: Since H0(Γ,M×) = C×p is uninteresting, consider its
higher cohomology!

Definition

A rigid meromorphic cocycle is a class in H1(Γ,M×) whose
restriction to the parabolic subgroups of Γ is C×p -valued.

H1
f (Γ,M×) := the group of rigid meromorphic cocycles.

J(γ1γ2)(z) = J(γ1)(z)× J(γ2)(γ−1
1 z).

Thesis: rigid meromorphic cocycles play the role of meromorphic
modular functions in extending CM theory to real quadratic fields.
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Evaluating a modular cocycle at an RM point

An element τ ∈ Hp is an RM point if and only if

StabΓ(τ) = 〈±γτ 〉

is an infinite group of rank one.

Definition

If J ∈ H1(Γ,M×) is a rigid meromorphic cocycle, and τ ∈ Hp is
an RM point, then the value of J at τ is

J[τ ] := J(γτ )(τ) ∈ Cp ∪ {∞}.

The quantity J[τ ] is a well-defined numerical invariant,
independent of the cocycle representing the class of J, and

J[γτ ] = J[τ ], for all γ ∈ Γ.
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Explicit rigid meromorphic cocycles

For any τ ∈ Hp , the orbit Γτ is dense in Hp.

Suppose that τ is an RM point in Hp.

The set Στ := {w ∈ Γτ such that ww ′ < 0} is discrete.

Theorem (Jan Vonk, D)

For each real quadratic τ ∈ Hp, there is a unique
Jτ ∈ H1(Γ,M×/C×p ) for which

Jτ (S)(z) ∼
∏

w∈Στ

(z − w)sgn(w), S :=

 0 1

−1 0

 .
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The classification theorem

If ∆ =
∑

i ni [τi ] ∈ Div(Γ\Hp), write

J∆ :=
∏
i

Jniτi .

A hint that rigid meromorphic cocycles are intimately tied to the
arithmetic of real quadratic fields is given by the following
classification theorem:

Theorem (Vonk, D)

If J ∈ H1(Γ,M×), then there exists
• A divisor ∆ ∈ Div(Γ\HRM

p );
• An analytic cocycle J0 ∈ H1(Γ,A×/C×p );
such that J = J∆ × J0 (mod C×p ).
∆ determines J completely. (It is called the divisor of J).
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• A divisor ∆ ∈ Div(Γ\HRM

p );
• An analytic cocycle J0 ∈ H1(Γ,A×/C×p );
such that J = J∆ × J0 (mod C×p ).
∆ determines J completely. (It is called the divisor of J).



Fields of definition

The previous discussion allows us to associate to an arbitrary
J ∈ H1

f (Γ,M×) a field of definition.

Definition

The field of definition of J, denoted HJ , is the compositum of HD

as D ranges over the discriminants of all the RM points in the
support of the divisor of J.
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Monstrous primes and principal divisors

Definition

A prime p is said to be monstrous if it satisfies the following
equivalent conditions:

• p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 or 71.
• p divides the cardinality of the monster sporadic simple group;
• the quotient X0(p)/wp has genus zero.

Proposition

If p is a monstrous prime and τ is any RM point on Hp, then
(τ)− (pτ) is a principal divisor.
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A cocycle attached to the golden ratio

Recall that ϕ = −1+
√

5
2 is the golden ratio.

If p = 2, 3, 5, 7, 13, 17, 23, or 47 is a monstrous prime which is
6= ±1 (mod 5), the divisor (ϕ)− (pϕ) is principal. Let J+

ϕ be the
associated rigid meromorphic cocycle.

The RM point τ =
√

223 of discriminant 223 has class number 6,
and J+

ϕ [
√

223] appears to satisfy:

p = 7. 282525425x6 + 27867770x5 + 414793887x4 −
128906260x3 + 414793887x2 + 27867770x + 282525425,

p = 13. 464800x6 + 1275520x5 + 1614802x4 + 1596283x3 +
1614802x2 + 1275520x + 464800,

p = 47. 4x6 + 4x5 + x4 − 2x3 + x2 + 4x + 4.
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Differences of RM singular moduli

If p = 2, 3, 5, 7, or 13, then any τ ∈ HRM
p is principal.

Definition: The quantity Jp(τ1, τ2) := Jτ1 [τ2] is called the p-adic
intersection number of τ1 and τ2.

Conjecture (Jan Vonk, D)

The quantity Jp(τ1, τ2) belongs to the compositum H1H2 of the
ring class fields of K1 = Q(τ1) and K2 = Q(τ2) attached to τ1 and
τ2 respectively, and behaves in all important respects just like the
classical

J∞(τ1, τ2) := J(τ1, τ2) = j(τ1)− j(τ2)

of Gross-Zagier.
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Gross-Zagier factorisations

Let τ1 and τ2 ∈ H be CM points with (negative) discriminants D1

and D2, and let OD1 and OD2 be the associated quadratic orders.

For each prime q that is non-split in Q(τ1) and Q(τ2), Gross and
Zagier define an explicit “purely algebraic” quantity eq∞(τ1, τ2) in
terms of the embeddings of OD1 and OD2 into the definite
quaternion algebra Bq∞ ramified at q and ∞.

Conjecture (Gross-Zagier)

If q is split in either Q(τ1) or Q(τ2), then ordq J∞(τ1, τ2) = 0.
Otherwise,

ordq J∞(τ1, τ2) = eq∞(τ1, τ2).
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Factorisations of real quadratic singular moduli

For τ1, τ2 ∈ HRM
p , one can likewise define an arithmetic quantity

eqp(τ1, τ2) involving the indefinite quaternion algebra Bqp ramified
at q and p.

The group Γpq = (OBqp)×1 ⊂ SL2(R) acts discretely and
co-compactly on H;

The Riemann surface Γpq\H is called the Shimura curve Xqp

attached to the pair (p, q).

To τ1 and τ2 are associated hyperbolic geodesics γ1 and γ2 on Xqp.

eqp(τ1, τ2) := weighted intersection of γ1 and γ2 on Xqp.
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Let q be a prime. If q is split in either Q(τ1) or Q(τ2), then
ordq Jp(τ1, τ2) = 0. Otherwise,
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An example

James Rickards has developed and implemented efficient algorithms
for computing the q-weighted topological intersection numbers
eqp(τ1, τ2) of real quadratic geodesics on the Shimura curve Xqp.



An example: D1 = 13, D2 = 285 = 3 · 5 · 19, p = 2

J2(τ1, τ2) satisfies (to 800 digits of 2-adic precision)

77360972841758936947502973998239x4 + 140181070438890831721314135099803x3

+209895619549791255199413489899292x2 + 140181070438890831721314135099803x

+77360972841758936947502973998239,

.

James Rickards: The topological intersection eq2(τ1, τ2) is zero
except for the primes q in the following table:

q 7 19 31 73 109 151 163 397 457 463

eq2(τ1, τ2) 7 2 2 1 2 2 1 1 1 1

Jan Vonk, D: 77360972841758936947502973998239 =

77 ·192 ·312 ·73 ·1092 ·1512 ·163 ·397 ·457 ·463,
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Some key difference with the classical setting

Meromorphic functions form a ring: they can be added and
multiplied.

Rigid meromorphic cocycles can only be multiplied!

The (trivial) identity

J∞(τ1, τ2) + J∞(τ2, τ3) = J∞(τ1, τ2)

has no counterpart for Jp(τ1, τ2).

The abc conjecture is saved!

Likewise there seem to be no applications to Siegel zeroes for even
Dirichlet characters, à la Granville-Stark.



Some key difference with the classical setting

Meromorphic functions form a ring: they can be added and
multiplied. Rigid meromorphic cocycles can only be multiplied!

The (trivial) identity

J∞(τ1, τ2) + J∞(τ2, τ3) = J∞(τ1, τ2)

has no counterpart for Jp(τ1, τ2).

The abc conjecture is saved!

Likewise there seem to be no applications to Siegel zeroes for even
Dirichlet characters, à la Granville-Stark.
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Theoretical evidence

The evidence for this theory so far is largely experimental, but
there has been some recent progress on the theoretical front.

Definition

The cuspidal value of a rigid meromorphic cocycle J is the quantity

J[∞] := J(γ∞), where γ∞(∞) =∞.

Theorem (Vonk, D)

J[∞] is algebraic. More precisely, a power of it belongs to H×J .

The proof rests on a remarkable recent work of Samit Dasgupta
and Mahesh Kakde, building on the proof of the “rank one p-adic
Gross-Stark conjecture” by Dasgupta-Darmon-Pollack (2006).
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Thank you for your attention.


