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A long quest for new kinds of elliptic functions

Elliptic functions are meromorphic functions with poles located on
a period lattice w1Z + wyZ, e.g.

Ey(w,z) = Z L

= (awy + bwyp + z)k°

Beyond SLy(Z)... SL3(Z) ?

Obstruction : It's been long known that there are no
meromorphic functions with 3 lin. independent periods. Period.
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A long quest for setting others than SL,(Z)

21 years old G. Eisenstein (1844) observes :

1
(awl + bwy + cws + Z)

. diverges. He suggests :
a,b,ceZ3

"However no such inconvenience arises if we impose some
restrictions on the summation indices such as inequalities
conditions....

... There is a large class of such functions that is closely
connected to Number Theory.... These functions possess very
remarkable properties; they lead to the most beautiful researches,
and seem to lie at the crossroads where the most difficult parts of
analysis and number theory meet.”



A long quest for setting others than SL,(Z)

three remarks :
e Eisenstein actually emphasized on infinite products, considering
infinite series as a secondary issue.

e Historical aside :
G. Eisenstein (1823-1852), and
L. Kronecker (1823-1891) were students and friends in Berlin.

e This 1844 paper of Eisenstein has been mocked by Jacobi, and
subsequently has been largely ignored (quoted less than 10 times in
the next 150 years). It certainly deserves to be re-evaluated.
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e Historical aside :
G. Eisenstein (1823-1852), and
L. Kronecker (1823-1891) were students and friends in Berlin.

e This 1844 paper of Eisenstein has been ridiculed by Jacobi, and
subsequently has been largely ignored (quoted less than 10 times in
the next 150 years). It certainly deserves to be re-evaluated.

e Our aim : armed with this predictive (and cryptic) assertion of
Eisenstein, we want to revisit some intriguing identities discovered
by Felder-Varchenko (2005) in connection with the KZB Heat
equation, and to merge them with Number Theory.



Definition

(Felder-Varchenko, 2005). For 7,0 € H x H, k > 0,
g =e(7),r = e(o), they consider

(-1
Fy (T, (27i) anlq )

n>1 (1

1
= Z = Z +bdary m7

a€Z,b,c>0 a€Z,b,c<0

r”)

where the last line (an observation of Zagier) only holds for odd
k > 5. "bdary” means a contribution a € Z, b= 0,0 # ¢ € Z and
b+ c.



Definition
(Felder-Varchenko, 2005). For 7,0 € H x H, k > 0,
q =e(7),r = e(o), they consider

ko1 q" — (=1
(1—q")(1—r")

Fe(r,0) = (27ri)k n
n>1

1
= Z = Z +bdary m,

a€Z,b,c>0 a€Z,b,c<0

where the last line only holds for odd k > 5.

Theorem
(F.V.) Ifr,0,2 € H, then

1 {0 if k> 4,

1l o 7
s~k (_Z 2 PR A Rl
Fk(T’a) T Fk( T’ 7‘)+( (7) Fk( o’ a') o iTPg € iﬁQ(T, U),k:1,2,3



(F.V.) If r,0,2 € H, then

1 o e, T 1 [0 ifk>4
—k k — ——) = P
Filr o)== F(=2, DIH(=o) P Ad=2,=7) _{ imPy € inQ(r,0),k=1,2,3

What is going on here ?



(FV.)If,0,% € H, then

_ 1o _ T 1 0 if k>4
k k Ty =
Filr,0)=7 Fk(i;’ ;)Jr(ig) Fk(ig’ U) { imtPy € imQ(r,0),k=1,2,3

This identity is reminiscent of the more familiar (k even)

Ex(7) := 2¢(k)

l—q”)
1

= bOllIld&I'y ol Z m y

a€Z,b>0

which satisfies

_ 1 0 if k > 4 (i.e. Eisenstein series are modular)
kE Iy > ,
Bi(r)=m""E(= 1) { iTPy, P € Q(7) if the weight is 2.



An improved Felder-Varchenko identity

& _ n_(—1 k ,.n .
For 7,0,2 € H, Fi(7,0) = cst. 35, nk 1% :

1 o T 1 0 if k>4
—k —k _ Ty = s
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key insight : go further down in the weight parameter (and keep your
eyes open for help from Great Masters of the past).
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An improved Felder-Varchenko identity

Theorem

(P.C.)
For7,0,% € H, Fx(1,0) = cst. Zn21 n

k=1 q"—(=Dkrm
A== °

1 o T 1 U g =i,
Fk(T,O')f’Tika(f;, ;)Jr(fo)*ka(f;, 7;) =< itPy € imQ(7,0),k=1,2,°

itPy € imQ(r,0), k < 0.

while Ei(7) =cst. > o nk’lﬁ satisfies

0 if k > 4 (modular),
_ 1 iTPy, Px € Q(7) if k = 2 (almost modular)
kg 1y ks Pk
Ei(r)="Eul 7') iTPy, Py € Q(7,logT) if k = 0 (Dedekind’s logn),
TPy, Py € Q(7) if k < 0 (Lerch, Ramanujan).



Interpretation as cocycle relations for SLy(Z), SL5(7Z).

Rewrite
Fi(T rf)—7'_k"'_k(—1 g)'1'(—<7)_k/:k(_Z —l) = inPy € iTQ(r,0),k <0
é T o o T
as
k k [
Fel,ez(Tv J) - Fel,e3(7— 0) =+ Fez 63( ) Iﬂ—Pel e, 83(7_7 U) € IWQ(T‘ 0)7

where e; = (1,0,0), e = (0,1,0), e3 = (0,0, 1) stand for the canonical
basis of Z3,

. _ k— q" - e
while Ei(7) =cst.30 1 n {oqn satisfies

1
(1

Ei(T) — T*kEk(—%) = Ex — Ex | S = inP*(S)(7).



Interpretation as cocycle relations for SLy(Z), SL5(7Z).

Rewrite

1 1
Fi(r,0)—1"%Fi(—=, g)—l—(—O’)_ka(—I, —=)=imPy € inQ(7,0), k <O0.
T T o
as
FX (r,0) — FX (1,0) + Fek2763(7',0) = iTrPer%(T,(T) € inQ(r,0),

€1,€2 €1,€3

where e; = (1,0,0), e, = (0,1,0), e3 = (0,0,1) stand for the canonical
basis of Z3,

while Ei(7) =cst.> -, nk’lﬁ satisfies
Ek — Ek | S = IWP(S)(T),
and more generally

E. | (Id — A) = irP(A)(r), any A € SLy(Z).



Interpretation as cocycle relations for SLy(Z), SL5(7Z).

Feﬁ!GQ(T, o) — Ff_,kh%(r, o)+ Fel;e3(7',a) = iTFP:l’eQ’%(T., o) € itQ(r, o),

while

| Ex | (1d — A) = inP(A)(7) € Q(7), any A € SLy(Z), |

which implies that the period " polynomials " satisfy

P(AB)(1) = P(A)(B7) + P(B)(7).

Consequence :
A — P(A)(7) is a 1-cocycle for SLy(Z).
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Interpretation as cocycle relations for SLy(Z), SL5(7Z).

F:heQ(T, o) — FQ%(T, o)+ Fek2763(7',0) = I.TFP:I762763(T, o) € inQ(t,0),

while

| Ei | (1d — A) = inP(A)(7) € Q(7), any A € SL»(Z), |

Consequence :

A — P(A)(7) is a 1-cocycle for SLy(Z) (and Lerch-Ramanujan provided
a splitting for it).

The cohomology class attached to this 1-cocycle is non trivial : let
F/Q be a real quadratic field. The fundamental unit ¢ acts on
OF = w1Z + wyZ, providing us with a cycle Ag to pair with our
1-cocycle :

< Pr, AF >=(r(1 — k) € Q*. (Meyer-Klingen-Siegel).

It is also a major tool for p-adic works : Darmon-Dasgupta, Chapdelaine.



Interpretation as cocycle relations for SLy(Z), SL5(7Z).

:‘-_(:‘1’62(7'7 o) — Feklﬁ(T, o)+ F;e3(7',o) = itPk (1,0) € imQ(7, o).

€1,€2,€3

Theorem

(P.C.) there is a collection of homog. degree k merom. functions Fa’f (%),
defined for x in certain open subsets of CP?> — RIP?> and indexed by pairs
(a, b) of primitive vectors in 73, that satisfy ¥ g € SL3(7Z)
nga’gb(gx) = Fa",b(x)7 and

F;b(T,O') — F;C(T,O') + F;C(T,U) = irP%, (1,0) € inQ(r,0).

a,b,c

reminder :
| Ei | (1d — A) = inP(A)(7) € Q(7), any A € SLy(Z), |

(which can also be formally recasted as

EX — Ex, = iTPe pe,(T) € Q(7), any A € SLy(Z).)



Our favourite 2-cocycle for SL3(Z).

Theorem
(P.C.)(copied from prev. slide) there is a collection of homog.
degree k merom. functions F; (x), defined for x in certain open

subsets of CP? — RIP? and indexed by pairs (a, b) of primitive
vectors in Z3, that satisfy Fj, .,(gx) = FX,(x), Vg € SL3(Z), and

Fap(7,0) = Fio(1,0) + Ff(1,0) = inPy}, (7, 0) € inQ(7, 0).

Consequence :

(a,b,c) — Pk

a,b,c

e Q : What is this 2-cocycle ? Is it trivial ?

€ Q(x1,x2, x3) is a homog. 2-cocycle for SL3(Z).



Our favourite 2-cocycle for SL3(Z).

F:b(T,O') = F;C(T,O') + F;C(T,U) = I'WP;(’byC(T, o) € itQ(t, o).

Consequence :
(a,b,c) = Pk, . € Q(x1,%,x3) is a homog. 2-cocycle for SL3(Z).

e Q : What is this 2-cocycle ? Is it trivial ?

Theorem

(P.C.) This 2-cocycle on SL3(Z) is equal to the "Shintani-cocycle”
recently introduced in C-Dasgupta-Greenberg following work of Solomon,
as a variation of the Sczech-cocycle (1993). It is non-trivial because it
parametrizes values of zeta functions of tot. real cubic fields.



Our favourite 2-cocycle for SL3(Z).

F;b(T,J) — F;C(T,J) + Ft’;C(T,cr) = I'T«':D;’byc(’r, o) € itQ(t,0).

Consequence :
(a,b,c) — PX, . € Q(x1,x2,x3) is a homog. 2-cocycle for SL3(Z).

e Q : What is this 2-cocycle ? Is it trivial 7

Theorem

(P.C.) This 2-cocycle on SL3(7Z) is equal to the "Shintani-cocycle”
recently introduced in C-Dasgupta-Greenberg following work of Solomon,
as a variation of the Sczech-cocycle (1993). It is non-trivial because of
the connection to values of zeta functions.

Proof.

The cocycles all match up using explicit formulas. The non-triviality also
follows from [CDG2015] : if F/Q is cubic and tot. real, then 2 fund.
units of F act on OF, and give rise to a 2-cycle in homology. Conclude
invoking Shintani : < P* Cr >= (r(1 — k) € Q.



Eisenstein cocycle on SL,(Z) Hall of Fame.
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Complex cubic fields...?

Let F/Q be a complex cubic field. The unit group Ur = + < e >
has rank 1 and acts on O = w1Z + wyZ + w3Z, and as such gives
rise to a 1-cycle in the homology of SL3(Z).

It is very tempting to make a conjecture about the algebraicity of
the F,p evaluated on this 1-cycle. By lack of numerical evidence at
this early stage, I'll be cautious and will not make any precise claim
yet. Avoiding any ridicule.



Thanks, references, and advertisement for related work-in-progress:

e "Euler classes transgressions and Eisenstein cohom. of GL,(Z).
joint with Nicolas Bergeron, Luis Garcia and Akshay Venkatesh.

R

e Takagi Lectures by N. Bergeron (incl. 55p. notes + video).
e see also his IAS video March 2018.
e technicalities involved : similar to yesterday’s talk by S. Sankaran

e talk this afternoon by H. Darmon.



LES 10 JOURS QUI ONT BOULEVERSE
LA VIE D'EISENSTEIN

The End
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