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Overview

• Common origin:
• Analogues of Kato elements organized into group cocycles

• Theta correspondences between pairs of groups - automorphic forms to automorphic
forms. Or, homology classes to automorphic forms. Example for two copies of GL2:

H1(Γ,M2(H)) = hom(H1(Γ),M2(H))

with Γ,H ⊂ SL2(Z).
• Constructed from equivariant complexes in cohomology
• Arithmetic applications: group cocycles valued in motivic cohomology with very good

formal properties, with explicitly computable regulators. Can be put into p-adic families,
used for Iwasawa theory, etc.

• Example: diagonal restrictions of Hilbert modular surface Y ⊂ YF .
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(Kato-)Siegel units

• E → Y universal elliptic curve (with some level structure)

• Canonical meromorphic functions

Cg ∈ O(E − C )× ⊗ Z[1/6]

specified via (degree-zero) divisors C supported at torsion sections C

• Pullback by torsion section x : Y → E − C is

Cgx ∈ O(Y)×

• Relation to Eisenstein series:

d log Cg = E
(C)
1 (τ, z)dz + E

(C)
2 (τ, z)dτ

3 / 8



(Kato-)Siegel units

• E → Y universal elliptic curve (with some level structure)

• Canonical meromorphic functions

Cg ∈ O(E − C )× ⊗ Z[1/6]

specified via (degree-zero) divisors C supported at torsion sections C

• Pullback by torsion section x : Y → E − C is

Cgx ∈ O(Y)×

• Relation to Eisenstein series:

d log Cg = E
(C)
1 (τ, z)dz + E

(C)
2 (τ, z)dτ

3 / 8



(Kato-)Siegel units

• E → Y universal elliptic curve (with some level structure)

• Canonical meromorphic functions

Cg ∈ O(E − C )× ⊗ Z[1/6]

specified via (degree-zero) divisors C supported at torsion sections C

• Pullback by torsion section x : Y → E − C is

Cgx ∈ O(Y)×

• Relation to Eisenstein series:

d log Cg = E
(C)
1 (τ, z)dz + E

(C)
2 (τ, z)dτ

3 / 8



(Kato-)Siegel units

• E → Y universal elliptic curve (with some level structure)

• Canonical meromorphic functions

Cg ∈ O(E − C )× ⊗ Z[1/6]

specified via (degree-zero) divisors C supported at torsion sections C

• Pullback by torsion section x : Y → E − C is

Cgx ∈ O(Y)×

• Relation to Eisenstein series:

d log Cg = E
(C)
1 (τ, z)dz + E

(C)
2 (τ, z)dτ

3 / 8



Kato elements and Eisenstein series

• Cup products in motivic cohomology:

cgx1 ⌣ cgx2 ∈ H2(Y,Z[1/6](2))

• Kato’s explicit reciprocity law allows us to evaluate a p-adic regulator valued in
M2(Y,Zp).

• Essentially identified with

(x1, x2)
∗ι∂z1⊗∂z2 [(d log∧d log)cg ⌣ cg ] ∼ E

(c)
1 (τ, x1)E

(c)
1 (τ, x2)

• Applications towards special values of L-functions (Birch and Swinnerton-Dyer and
related conjectures)

• Eisenstein series compute L-values (Rankin-Selberg), can be p-adically interpolated via this
algebraic construction

• Motivic classes bound Selmer groups
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The general situation

• If we have a genus-g abelian family A → S, can construct “big Eisenstein class” by
specifying torsion section residues in any suitable cohomology theory:

. . .→ H2g−1(A) → H2g−1(A− C ) → H0(C ) → H2g (A) → . . .

• C ∈ H0(C )deg=0 lifts to EisC ∈ H2g−1(A−C ), remove ambiguity using “Lieberman projector”
• Equivariant theory H•

Γ will have Hochschild-Serre spectral sequence

Hp(Γ,Hq(X )) ⇒ Hp+q
Γ (X )

yielding an edge map to group cohomology

H2g−1
Γ (A− C ) → Hg−1(Γ,Hg (A− C ))

if we shrink A− C enough to make some groups vanish. Obtain group cocycle
• Can construct equivariant theory by taking equivariant versions of the complexes; e.g.

Bloch’s cycle complex for motivic cohomology, Dolbeault complex for coherent
cohomology. Get cocycles ΘM

C , ΘC
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Application: Diagonal restrictions of Hilbert-Eisenstein series

• In the case of E2 → Y (Sharifi-Venkatesh) equivariant complex is computable:

0 → KM
2 (Q(E2))(0) →

(
⊕D∈Y(1)KM

1 (Q(D))
)(0)

→
(
⊕x∈Y(2)KM

0 (Q(x))
)(0)

• Find that ΘM
C ∈ H1(Γ,KM

2 (Q(E))) is valued in cup products of Siegel units (Kato
elements!)

Theorem

The regulator ΘC = d log⊗2ΘM
C is given by the regularized Eisenstein theta lift of

Bergeron-Charollois-Garcia.

• Upshot: compute some interesting values of ΘC : e.g. when γ = γF primitive hyperbolic
for a real quadratic field F , get diagonal restriction of weight (1, 1)-Hilbert-Eisenstein
series

ΘC,x(γF ) ∼
∑

(m,n)∈O2
F /∆

1

(mτ + n + x)(m′τ + n′ + x ′)
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Application: Diagonal restrictions of Hilbert-Eisenstein series

(cont.)

• Darmon-Pozzi-Vonk: Gs(ψ) family of Hilbert-Eisenstein series vanishing at s = 1

• Derivative at s = 1 G′
1(ψ) related to p-adic regulators of Stark-Heegner points

• By lifting construction to ΘM
C and some p-adic Hodge theory, construct a global p-adic

motivic analogue of G′
1(ψ), hence deduce...

Theorem

For a real quadratic field F and an inert prime p, there exists a p-adic motivic class in

H2(Y0(p),Qp(1)) = Mordell-Weil group of J0(p)⊗Z Qp

realizing each Stark-Heegner point (“almost algebraicity”).

• Kolyvagin-type applications
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Conclusion, future directions

• Kudla program philosophy: derivatives at central values of incoherent Eisenstein series are
related to algebraic cycles

• Relation to constructions on p-adic symmetric spaces, the p-adic Kudla program
• Applications to special values of L-functions

• Euler systems for other Shimura varieties
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