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The next 25 minutes of your life

Here’s what we’ll be doing

• Introduce a Galois module of interest

• Review what is known about it

• Reinterpret module-theoretic info arithmetically

• Compute some examples
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Motivation and Background



Big picture goal

Problem under consideration

If K/F is a biquadratic extension and char(F ) ̸= 2,

decompose K×/K×2 as module over F2[Gal(K/F )].

Why should we care?
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If K/F is a biquadratic extension and char(F ) ̸= 2,

decompose K×/K×2 as module over F2[Gal(K/F )].

Why should we care?

If decomposition is “special” for any K/F , this means absolute

Galois groups are “special” too

(Spoiler alert: this module has been decomposed, and its

“special” for any choice of K/F )
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Notation

K = F (
√
a1,

√
a2)

σi(
√
aj) = (−1)δij

√
aj

G = Gal(K/F ) ≃ Z/2Z⊕ Z/2Z

[γ] ∈ K×/K×2 is class of

γ ∈ K×

[γ]i ∈ K×
i /K×2

i is class of γ ∈ Ki

Hi = Gal(G/Ki)

K

F (
√
a1) F (

√
a1a2) F (

√
a2)

F
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Warning: graphic content

We will view module information with pictures

[α]

[α1]

1
+
σ 2

[α1] = [α]1+σ2

[β]

[β1]
1
+

σ
2

1
+

σ
1

[β1] = [β]1+σ2

= [β]1+σ2

[γ]

[γ1] [γ2]

1
+
σ 2

1
+
σ
1

[γ1] = [γ]1+σ2

[γ2] = [γ]1+σ1
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A sample of F2[Z/2Z⊕ Z/2Z]-indecomposables

For n > 1, there are 2 indecomposables of dimension 2n + 1

Ω−n

[α1] [α2]

· · ·

[αn]

[β1] [β2] [β3] [βn] [βn+1]

1
+
σ 2

1
+
σ
1 1

+
σ 2

1
+
σ
1 1

+
σ 2

1
+
σ
1

1
+
σ 2

1
+
σ
1

Ωn

[γ1] [γ2] [γ3]

· · ·

[γn] [γn+1]

[δ1] [δ2] [δn]

1
+
σ
1 1

+
σ 2

1
+
σ
1 1

+
σ 2 1

+
σ
1 1

+
σ 2

1
+
σ
1 1

+
σ 2
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A sample of F2[Z/2Z⊕ Z/2Z]-indecomposables

[α1]

[α2]

F2[G/H1]

[α1]

[α2]

F2[G/H2]

[γ1]

[γ2]

F2[G/H3]

[δ1]

[δ2] [δ3]

[δ4]

F2[G/H0]

[ϵ1]

F2[G/H4]
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Our module decomposition

Theorem [Chemotti, Mináč, S-, Swallow]

Suppose char(K ) ̸= 2 and Gal(K/F ) ≃ Z/2Z⊕Z/2Z. Then

K×/K×2 ≃ O1 ⊕ O2 ⊕ Q0 ⊕ Q1 ⊕ Q2 ⊕ Q3 ⊕ Q4

︸ ︷︷ ︸
“unexceptional summand”Y

⊕ X ,

where

• for each i ∈ {1, 2}, the summand Oi is a direct sum of

modules isomorphic to Ωi ; and

• for each i ∈ {0, 1, 2, 3, 4}, the summand Qi is a direct

sum of modules isomorphic to F2[G/Hi ]; and

• X is isomorphic to one of the following:

{0},F2,F2 ⊕ F2,Ω
−1,Ω−2, or Ω−1 ⊕ Ω−1.

8



Our module decomposition

Theorem [Chemotti, Mináč, S-, Swallow]
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Motivation and Background

How the decomposition works



Basic strategy

Lemma (Exclusion lemma)

If U ,V ⊆ W are F2[G ]-modules, then

U ∩ V = {0} ⇐⇒ UG ∩ V G = {0}

Strategy:

I: Build a big module Y with Y G = [F×] ⊆ (K×/K×2)
G

II: Build a small module X “over” a complement to [F×]

III: Show X + Y spans
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How do we build Y ?

Guiding principle

If [f ] ∈ [F×] is in the image of a norm map in K×/K×2,

make sure it’s in the image of that norm map in Y .

• Preference given to “bigger” norms

• Preference given to “multiple norms”

10



Introducing the norms

[k]

[k]1+σ2 [k]1+σ1

[f ]

A = {[f ] : ∃[k] ∋ . . . }

[γ]

[1] [f ]

B = {[f ] : ∃[γ] ∋ . . . }

[γ]

[f ] [1]

C = {[f ] : ∃[γ] ∋ . . . }

[γ]

[f ]

D = {[f ] : ∃[γ] ∋ . . . }
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Tension!

But what if [f ] ∈ B ∩ C ?

[γ1] [γ2]

[f ][1] [1]

V = {[f ] : ∃[γ1], [γ2] ∋ . . . }

To be greedy, we want V more than B or C

12
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One final issue

What about (B + C ) ∩ D?

Lemma [Tracking norm interactions]

[b][c] ∈ (B + C ) ∩ D if and only if there is a solution to

[γ1] [γ2] [γ3]

[1] [b] [c] [1]

Define W = {([b], [c]) : ∃[γ1], [γ2], [γ3] ∋ . . . }.
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Building the unexceptional piece

Proposition

There exists a submodule Y whose fixed part is [F×], and

which is a direct sum of modules isomorphic to

• F2[G/Hi ] for i ∈ {0, 1, 2, 3, 4}
• Ωk for k ∈ {1, 2}

Proof sketch:

Move through subspaces in order (A ,V ,W ,B,C ,D , [F×])

⇝ Make module “above” your element for given diagram

⇝ Be sure to avoid what you’ve already captured!
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Reinterpreting the construction

of Y



Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams,

but gives no indication of how we determine solvability

Theorem [Diagram solvability and Br(F )]

Let S = ⟨(a1, a1), (a1, a2), (a2, a2)⟩ ⊆ Br(F ). For f , g ∈ F×,

we have (a1, f )(a2, g) ∈ S iff there exists γ ∈ K× with

[γ]

[g ] [f ]

1
+
σ 2

1
+
σ
1

Sketch of proof: solvability of Galois embedding problems

15



Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams,

but gives no indication of how we determine solvability

Theorem [Diagram solvability and Br(F )]

Let S = ⟨(a1, a1), (a1, a2), (a2, a2)⟩ ⊆ Br(F ). For f , g ∈ F×,

we have (a1, f )(a2, g) ∈ S iff there exists γ ∈ K× with

[γ]

[g ] [f ]

1
+
σ 2

1
+
σ
1

Sketch of proof: solvability of Galois embedding problems

15



Arithmetic interpretation for solvability

Original argument views Y in terms of solvability of diagrams,

but gives no indication of how we determine solvability

Theorem [Diagram solvability and Br(F )]

Let S = ⟨(a1, a1), (a1, a2), (a2, a2)⟩ ⊆ Br(F ). For f , g ∈ F×,

we have (a1, f )(a2, g) ∈ S iff there exists γ ∈ K× with

[γ]

[g ] [f ]

1
+
σ 2

1
+
σ
1

Sketch of proof: solvability of Galois embedding problems

15



Thinking rationally

Great news: if F = Q, then local-global principle makes

computing elements of Br(Q) nicely explicit:

(a, b) = (c , d) ∈ Br(Q) iff for all v ∈ {2, 3, 5, 7, · · · ,∞} we

have (a, b)v = (c , d)v

• if p = ∞ and a, b ∈ Z then

(a, b)∞ = −1 if a, b < 0, (a, b)∞ = 1 else

• if p odd prime then for gcd(a, p) = gcd(b, p) = 1 we get

(a, b)p = 1, (a, p)p =

(
a

p

)
, (p, p)p =

(
−1

p

)
• if p = 2 and a, b ∈ 2Z+ 1 then

(a, b)2 = (−1)
a−1
2

· b−1
2 , (a, 2)p = (−1)

a2−1
8 , (2, 2)2 = 1
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Application: hunting for summands

V =

[f ] : ∃[γ1], [γ2] with
[γ1]

[1] [f ]

[γ2]

[1]



= {[f ] : (a1, f )(a2, 1) ∈ S and (a1, 1)(a2, f ) ∈ S}

= {[f ] : (a1, f ) ∈ S and (a2, f ) ∈ S}

Corollary

Ω1 summands of K×/K×2 exist if there exists f so that

(a1, f ), (a2, f ) ∈ S \ {0}.

17
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Finding Ω1 summands in the wild

Let K/F = Q(
√
7,
√
−5)/Q

S = ⟨(7, 7), (7,−5), (−5,−5)⟩

Goal: show K×/K×2 has Ω1 summands

⇝ enough to find f ∈ Q so (−5, f ), (7, f ) ∈ S \ {0}

Strategy: find prime p with (−5,−p) = (−5,−5) and

(7,−p) = (7, 7)

18
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Finding our prime, part I: (−5,−5) = (−5,−p)

Fact: (−5,−5)v = −1 iff v = 2,∞

(−5,−p)v = (−1,−1)v (5,−1)v (−1, p)v (5, p)v

=



− 1,

if v = ∞

− 1 · 1 · (−1)
p−1
2 · 1,

if v = 2

1 ·
(−1

5

)
· 1 ·

(
p
5

)
,

if v = 5

1 · 1 ·
(

−1
p

)
·
(

5
p

)
,

if v = p.

So we want p ≡ 1 (mod 4) and p ≡ 1, 4 (mod 5)

19
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Finding our prime, part II: (7, 7) = (7,−p)

Fact: (7, 7)v = −1 iff v = 2, 7

(7,−p)v = (7,−1)v (7, p)v

=


1, if v = ∞
−1 · (−1)

p−1
2 , if v = 2(−1

7

)
·
(
p
7

)
, if v = 7

1 ·
(

7
p

)
, if v = p.

So we need p ≡ 1 (mod 4) and p ≡ 1, 2, 4 (mod 7)

Summary: any prime p with p ≡ 1 (mod 4), p ≡ 1, 4

(mod 5), and p ≡ 1, 2, 4 (mod 7) works.

⇝ lots of Ω1 summands in this module
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What about Ω2 summands?

Ω2 summands occurs for solutions to

[1]

[γ1]

[f ]

[γ2]

[g ]

[γ3]

[1]

AND we must have [f ], [g ] ̸∈ V

So we need (a1, f ), (a2, g) ∈ S and (a2, f )(a1, g) ∈ S but

(a2, f ), (a1, g) ̸∈ S
Corollary

Ω2 summands of K×/K×2 exist if there exist f , g so that

(a1, f ), (a2, g) ∈ S and (a1, g) = (a2, f ) ̸∈ S.
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Finding Ω2 summands in the wild

Let K/F = Q(
√
33,

√
35)/Q

Goal: show K×/K×2 has Ω2 summands

⇝ enough to find f , g so that (a1, f ), (a2, g) ∈ S and

(a1, g) = (a2, f ) ̸∈ S.

Strategy: find primes p, q with (33, 3pq) = (33, 33) and

(35, 7pq) = (1, 1) and (33, 7pq) = (35, 3pq) ̸∈ S

⇝ Choose p so p ̸≡ □ (mod 3), p ̸≡ □ (mod 4), p ̸≡ □
(mod 5), p ≡ □ (mod 7), and p ̸≡ □ (mod 11)

⇝ Choose q so q ≡ □ (mod 3), q ≡ □ (mod 4), q ≡ □
(mod 5), q ≡ □ (mod 7), and q ≡ □ (mod 11)
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Lather, rinse, repeat

This same strategy provides methods for realizing other

“unexceptional” summand types over well-chosen rational

biquadratic extensions

The structure of the X summand also has new interpretation

in this lens (but less exciting since it was originally

interpretable in terms of Galois embeddings)
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Merci!
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