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L-Functions Connection to Random Matrix Theory

Katz–Sarnak Philosophy

In the limit, statistics of L-functions match statistics for large
random matrices from particular classical compact groups.

U(N)

O(N)

USp(2N)

SO(2N)



Background Elliptic Curve L-Functions A Weight 4 Example An Arithmetic Approach Acknowledgments

Modeling Low Lying Zeros of L-functions

Theorem (Kohnen-Zagier)

f ∈ Sk

g ∈ S+
(k+1)/2 Shimura correspondence

(−1)kd > 0

ψd Kronecker character

Then

Lf (
1
2 , ψd) = κf

c(|d |)2

|d |(k−1)/2
, where κf =

(k − 1)!

πk/2
⟨f , f ⟩
⟨g , g⟩

where c(|d |) is the |d |th Fourier coefficient of g .
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Excised Ensemble and Cut-Off Value

Definition

An excised ensemble is a collection of random matrices in which
we remove any generated matrix whose characteristic polynomial
evaluated at 1 is less than a cut-off value.

We use excised ensembles of random matrices to model L-function
statistics for finite conductor.
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Non-excised RMT Ensemble

Without excision, the orthogonal model does not capture any of
the repulsion behavior.

Left: Probability density of normalized eigenvalue closest to 1 for SO(8)
(solid), SO(6) (dashed) and SO(4) (dot-dashed).
Right: Distribution of lowest zero for LE11(s, χd) with 0 < d ≤ 400, 000
compared to two sizes of non-excised random matrix ensembles.
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The Excised Orthogonal Ensemble

In 2011, Dueñez, Huynh, Keating, Miller, and Snaith developed the
excised orthogonal ensemble, a sub-ensemble of SO(2N), as a
random matrix analogue for the family of quadratic twists of a
given elliptic curve.
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Repulsion of First Eigenvalue

The excised orthogonal ensemble exhibits the desired repulsion in
the distribution of first eigenvalues:

Left Image: Distribution of first eigenvalues from non-excised SO(24) random
matrices (blue) versus excised SO(24) random matrices (red). For the excised
plot, the sample size before excision was 3,000,000, cutoff approximately 0.005.

Right Image: Enlargement of data near the origin.
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Properties of the Excised Ensemble

On the scale of mean spacing, the excised ensemble exhibits an
exponentially small hard gap determined by the cut-off value, with
soft repulsion on a larger scale.

Taking N → ∞, there is limiting orthogonal behavior, which
qualitatively agrees with Miller’s discrepancy.
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Computing the Cutoff Value

To have a model that has a good quantitative agreement with
number theoretic data, we choose an appropriate cut-off value.

Dueñez, Huynh, Keating, Miller, Snaith determined this cut-off
value numerically by using the proportion of quadratic twists with
central vanishing.
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A Weight 4 Newform

Let f be the normalized, weight 4, level 7 newform over Q (Label
7.4.a.a in LMFDB).

The Fourier coefficients c(d) of the corresponding weight 5/2 form
can be obtained by adding the values of a quadratic form over a
3-dimensional lattice.

Figure: The running average for c(d)2/d3/2 for positive fundamental discriminants such that c(d) ̸= 0. This
value is proportional to the central value by Kohnen–Zagier.
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Lowest-lying Zeros

Using PARI/GP software, we computed the first three zeros for
many twists of f by quadratic characters.

Figure: The distribution of lowest-lying zeros for all twists of f by positive fundamental discriminants d ≤ 41128
with gcd(7, d) = 1 such that the twisted L-function does not vanish at the central point.
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Effective Matrix Size

To model the finite-conductor statistics, we need to pick a finite
matrix size for our SO(2N) ensemble.

We choose a matrix size to equate the mean densities of
eigenvalues with the mean density of L-function zeros, giving

Nstd = log

(√
MX

2πe

)
≈ 8,

where M = 7 is the level of f and X = 41128 is the largest twist
we consider in our statistics.
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The Orthogonal Ensemble

Figure: The distribution of the first eigenvalue for 106 random matrices in SO(16).
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Cut-off Computation

If we excise our random matrix data by a cutoff value C , we obtain
a new distribution.

To find an optimal cut-off value, we compute the L1 distance
between the cumulative distribution functions of the excised matrix
distribution and the distribution of zeros.
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Cut-off Computation

When we use all of our lowest-lying zero data for d ≤ 41128, we
obtain an optimal cut-off value of

C = 0.00095...

Figure: (Left) The L1 distance between our (rescaled) excised orthogonal data and our lowest-lying zero data for
various cutoffs c. (Right) The same data zoomed into the global minimum.



Background Elliptic Curve L-Functions A Weight 4 Example An Arithmetic Approach Acknowledgments

Mock Probability Distribution

Let PO+(N, x) be the probability density of x = ΛA(1,N) over the
ensemble A ∈ SO(2N). We construct a mock probability density
Pf (d , x) of x = Lf (

1
2 , ψd) at the d th Kronecker twist via

Characteristic Value Distribution (Statistics)

PO+(N, x) =
1

2πix

∫
(c)

MO+(N, s)x−s ds

Central Value Distribution (Dueñez et. al, Barrett et. al)

Pf (d , x) :=
1

2πix

∫
(c)

af (s)MO+(log d , s)x−s ds

.
The main feature is that, up to first order,

Pf (d , x) ∼ af (−1/2)PO+(log d , x).
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Mock Probability Distribution

To compute the cutoff value arithmetically, we need a scaling
factor to translate from the RMT perspective to the L-function
perspective.

af (s) =

[∏
p

(
1− 1

p

)s(s−1)/2
]

×

[∏
p∤M

(
1 + 1

p

)−1 (
1
p + 1

2

[
Lp(p

−1/2, f )s + Lp(−p−1/2, f )s
])]

× LM

(
εf

M1/2

)s
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Constructing a cut-off

On the other hand, by the discretization of central value, the value
is forced to be 0 if it’s less than some constant.

Lemma (Discretization)

Lf (k , ψd) <
κf

|d |(k−1)/2
=⇒ Lf (k , ψd) = 0

Note that this lemma is merely using the fact that c(d)s are
integers, and the κf

|d |(k−1)/2 bound is the crudest possible(taking 1).

Ideally, we can do better than 1.

Conjecture

|{Lf (s, ψd) ∈ F+
f (X ) : d prime,Lf (k , ψd) = 0}|

∼
∑

d≤X
d prime

Prob(0 ≤ Yd ≤ κf δf
d (k−1)/2 )

where δf is some constant related to the discretization.
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Cutoff value for RMT model

We first obtain our standard matrix size Nstd for our RMT model:

Nstd = log

(√
MX

2πe

)
∼ log(X ).

And by connecting the probability distribution function of central
value of this family of L-function and the corresponding
characteristic polynomial of RMT model evaluate at 1, we obtain
the following relation

Pf (d , x) ∼ af (−1/2)PO+(log d , x).
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Cutoff value for RMT model

To obtain the cutoff for RMT model: Cstd , we normalize our cutoff
κf δf

d (k−1)/2 for the pdf of L-function by applying the above relation of
the pdfs :

Theorem

Cstd = a−2
f (−1/2)δf κf × exp((1− k)Nstd/2)
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Conjecturing a cutoff

To get good δf , we conjecture this quantity should grow
accordingly with the scale of c(d)s. Thus we first chose
δf = E(c(d)2) regarding the Kohnen–Zagier formula.

But:

Figure: The running average for c(d)2/d3/2 for positive fundamental discriminants such that c(d) ̸= 0. This
value is proportional to the central value by Kohnen–Zagier.
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Ongoing Work

Work around stack size issues with PARI/GP to compute higher
twists.

Compute with more weight 4 forms to see if the behavior we
observe here is typical.

Analytically continue af (s) to −1/2 to apply the methods of
Dueñez et al. to compute the cutoff in a different way that can be
compared to numerical results.
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