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Elliptic curves

The basic modularity statement was conjectured by Shimura and
Taniyama and proved by Wiles and others:

Theorem
Let E be an elliptic curve over Q with conductor N. For all p ∤ N,
let ap(E ) = p + 1−#EFp . Then there exists a Hecke eigenform f
of weight 2 for Γ0(N) with Hecke eigenvalues ap(f ) = ap(E ).

Since then, this statement has been generalized in all sorts of ways:
elliptic curves over number fields, certain abelian varieties, some
other higher-dimensional varieties, etc. Much of this is formidably
technical.



Eichler-Shimura

The converse to the statement on the last slide, though proved
much longer ago, has been much harder to generalize:

Theorem
(Eichler-Shimura) Let f be a Hecke eigenform of weight 2, new at
level N, with Hecke eigenvalues ap(f ). Suppose that all ap(f ) ∈ Q.
Then there is an elliptic curve Ef with ap(Ef ) = ap(f ) for all p ∤ N.

Proof.
(sketch) Let E be the connected component of 0 in the
intersection of the kernels of Tp − ap(f ) on J0(N). The hard part
is to prove that dimE = 1.



Elkies-Schütt theorem

Elkies and Schütt showed that K3 surfaces are what is needed for
k = 3:

Definition
A K3 surface is a surface S with KS = 0, π1(S ,Z) = 0.

Examples of K3 surfaces include surfaces of degree 4 in P3,
intersections of a quadric and a cubic in P4, and one type of
surface of degree 2d in Pd+1 for every d > 0.

Theorem
(Elkies-Schütt) Let f be a known rational Hecke eigenform of
weight 3 and level N. Then there is a K3 surface S/Q of Picard
number 20 with p2 + ap(f ) + c(p)p + 1 points mod p for all p ∤ N.

(All such forms are “known” with at most one exception, which is
excluded by GRH.)



What about higher weight?

We want to look at varieties that have h3,0 = h0,3 = 1 (Hodge
decomposition of cohomology over C; or over an arbitrary field we
can define Hi ,j = Hq(X ,Ωp), where Ωp is the sheaf of holomorphic
p-forms). We also want hi ,0 = 0 for 0 < i < d , since otherwise the
point count mod p does not come only from h3,0. In other words,
we want Hi (X ,OX ) = 0 for 0 < i < d .

Definition
A Calabi-Yau variety is a smooth variety V of dimension d with
KV trivial and hi ,0 = 0 for 0 < i < d .

In dimensions 1, 2, these are elliptic curves and K3 surfaces.

In dimension 3, they are quintics in P4, and (2, 4) or (3, 3)
complete intersections in P5, and . . . hundreds of millions of other
families.



A big question

Gouvêa and Yui showed that if V is a Calabi-Yau threefold with
h2,1 = 0, then the traces of Frobenius on H3(V ) are the
eigenvalues of a Hecke eigenform of weight 4.

So one might ask (and in fact Mazur and van Straten have asked):

Question
For which rational Hecke eigenforms f of weight 4 is there a
Calabi-Yau threefold with h2,1 = 0 and H3 described by f ?



Example

Example

Let X be the double cover of P3 defined by
t2 = xyzw(x + y)(y + z)(z + w)(w + x). Then there is a
Calabi-Yau resolution of X with h2,1 = 0, corresponding to the
cusp form of weight 4 and level 8.

There are about 10 other arrangements of 8 planes with the same
property, but they give only 4 different modular forms.

It is not a coincidence that there is no deformation of the set of 8
planes that preserves all the intersections.



What is known so far

Several dozen forms of weight 4 have been realized by rigid
Calabi-Yau threefolds, and about the same number by nonrigid
ones.

In addition to double cover constructions as on the last slide, there
are various other sources: products of elliptic surfaces, mirror
symmetry, hypergeometric families, quantum field theory, . . . .



The new construction

The goal of this talk is to describe a new construction that I have
discovered that allows for the realization of a lot of previously
known and new weight-4 cusp forms.

The construction has the advantage of being simple and uniform,
and allowing the level of the cusp form attached to the threefold to
be predicted in many cases.

The disadvantage is that it seems quite difficult to prove that the
varieties I construct are actually rigid Calabi-Yau threefolds. In
principle this can be proved by a finite computation, but that
computation is not one that anyone would want to do.

Also, the construction is inherently bounded: it can only work for
finitely many forms up to twist. Even if there are only finitely
many forms up to twist, we are very far short of realizing them all.
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The Picard number

Let S be a smooth surface. Given two distinct curves on S , one
can define the intersection number, and in fact one can define the
self-intersection number of a curve.

This gives a symmetric bilinear form on the free abelian group of
curves. The quotient by the kernel is called the Néron-Severi group
of S . The symmetric bilinear form is still defined there.

The rank of this group is the Picard number of S .

If we fix a rank r and a bilinear form, there is a moduli space of K3
surfaces with Néron-Severi group Zr and the given form. Its
dimension is 20− r .



Families of K3 surfaces

Let T → P1 be a family of K3 surfaces over Q.

If there is a two-dimensional moduli space of K3 surfaces like the
fibres, then we can deform to another family in this moduli space.
So even if T is a Calabi-Yau threefold it is unlikely to be rigid.

The condition for this not to be possible is that the generic fibre
has Picard number 19. If that holds, there is no obvious way to
deform T .

So we might hope that T will be rigid if and only if the generic
fibre has Picard rank 19. This isn’t true, but it’s a surprisingly
good start.



Calabi-Yau total spaces

If the lattice is too small, the total space will be rational, and if it
is too large the space will be more complicated than a Calabi-Yau.

There is something we can try if the total space is rational.
Namely, let d : P1 → P1 be a double cover, and consider a base
change of T → P1 by d .

If d is chosen randomly we can now deform it, so we don’t expect
a rigid total space. To avoid this, we choose d so that the double
cover is maximally singular (i.e., for all nearby double covers, the
singular locus is smaller).

If the double cover is still rational, we can keep doing this.



Prior work in this direction

A paper of Doran-Harder-Novosel’tsev-Thomson classifies the n for
which there is a Calabi-Yau threefold whose general fibre is a K3
surface with Picard lattice E8 + E8 + ⟨−2n⟩+ U.

It is a short list; the largest is 23.

They find (somewhat) explicit models for these Calabi-Yau
threefolds, from which one could certainly find the modular forms.

I was discouraged by this result for a while, but it turns out that in
fact there are a lot of examples where the Picard lattice is not of
this form.
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Range of the construction

This construction reproduces many of the known modular forms
and finds a fair number of new ones as well. I haven’t been
systematic about keeping track of the old ones that we rediscover.

In some cases, only nonrigid realizations were previously available,
but I find a rigid one.

When we don’t take a cover of a rational family, the level of the
modular form is usually equal to the discriminant of the lattice
(i.e., half the determinant of the Gram matrix). Sometimes this is
off by a small square.



In more detail

In addition to a lot of realizations of modular forms already known
to arise in rigid Calabi-Yau threefolds, we find, up to level 70:

▶ 6 apparently rigid realizations of modular forms of weight 4
for which no realization was known before;

▶ 1 (level 49) nonrigid realization where none was known before;

▶ 13 apparently rigid realizations where only a nonrigid one was
known before.

Many of the last of these arise from a large computer search
conducted by Meyer, so this is the first genuine construction in
those cases.

There are a few more examples in larger (highly composite) levels,
but I need to look at these more systematically.

Again I emphasize that none of my examples has been proved.



One example, concretely

Let q1 = x(x + y)(y + z)z , q2 = (x − y − z −w)(x + y − z +w)yw .

The total space of the family tq1 + uq2 in P1 × P3 is rational.

The double cover given by t2 = (−64/27 q1 + q2)(q2) appears to
be a rigid Calabi-Yau threefold with the point count formula

p3 + p2 + (−1− (−1/p)− (2/p)− (3/p))p + 1− (2/p)ap.

We could twist by 2 to have just ap in the constant term.



The formula on the previous page

An empirical formula for the number of points that involves only
Artin symbols, powers of p, and the coefficients of a form of
weight 4 is strong evidence for rigidity.

I expect that constructing a resolution of singularities will produce
a formula of the form p3 + f (p)(p2 + p) + 1− ap, where f (p)
involves only Artin symbols. This indicates that
h1,0 = h2,0 = h2,1 = 0.

The symbols don’t have to be quadratic characters; we sometimes
have formulas depending on the number of solutions mod p to a
polynomial of degree 3, 4, 6.

It’s all right if a form of weight 3 appears in the formula, but if we
have p times a form of weight 2 that means a nonrigid realization.
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Things I should still do

The main weakness of this method is that it’s hard to prove that
the examples really are rigid Calabi-Yau threefolds. I will probably
never want to do this for all of them, but I should try

harder at least for two or three.

Also, although many new forms of weight 4 are realized this way,
there are still some annoying gaps, including all three forms of level
26. There are still some lattices I haven’t investigated fully,
because the total space appears to be rational but it is too hard for
me to trivialize it explicitly.

One could also try to find nice 1-parameter families of Calabi-Yau
threefolds. Families of rank less than 19 can give Calabi-Yau
varieties of higher dimension, which might realize modular forms of
higher weight.



End of talk

Thank you for your attention.

Are there any questions?
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