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Outline
» Recall about Diophantine arithmetic geometry, projective
varieties and fields of definition.

» Recall about canonical divisors for nonsingular projective
varieties.

v

Some conjectures about existence and distribution of
integral and rational points.

Geometry of numbers and Schmidt's Subspace Theorem.
Local Weil and Height functions.
Vojta's Main Conjecture.
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Influence of toric geometry, Convex (Newton-Okounkov)

bodies for big linear series, DH-measure and

differentiability of the volume function.

» K-stability for Q-Fano varieties and Vojta's Main
Conjecture.

» Additional recent results and progress.



Diophantine arithmetic geometry

» Main Goal. Study the solutions of those algebraic
equations, which are defined over algebraic number fields
and/or rings of algebraic integers.

» Tools and Challenges. The underlying arithmetic,
algebraic and birational geometry of Diophantine
equations.

» Key guiding questions. How to measure arithmetic
closeness and complexity of rational points and solutions
to Diophantine arithmetic equations.

» Influence from birational geometry. Distribution and
complexity of rational points, in projective varieties,
should be measured along rational curves; further the
Kodaira dimension of a given birational equivalence class
should play a role.



Recall about Projective Space

» Let K C C be a number field.
» Projective n-space over K is defined to be:

P" =P = {(x0.. ., X) € AT\ {0}}/ ~,
where
(%05 -+ s Xn) ~ (Yo, -+ Yn)
if and only if x; = \y; for each / and some 0 # \ € K.
» PPk is a basic example of a moduli space:

P" =P(V) = {1-dim'l quotients of an n+ 1 dim'l v.sp. V'}.
» P is covered by affine spaces Ag:
U={z=z::2z)€P":2#0}, i=0,...,n
Then P" = J, U; and ¢; : U; = Af via:

- ] ) 20 Zi-1 Zi+1 Zn
z=zg: - :zy) > | —, ..., , v, — |

Zj Zj Zj Zj



Recall about Projective Varieties
» Are irreducible and reduced Zariski closed subsets

X C g,
which are defined by the condition that:
X =V(l)={(2,...,2,) € Pk :
Fi(zo,...,2y) == Fi(20,...,2,) =0}

for homogeneous polynomials F;(z, . . ., z,) generating a
homogeneous prime ideal

| = <F1,...,Fg> - K[Zo,...,Zn].
» Homogeneous Ideal Variety Correspondence:
prime homogeneous ideals | C (z, ..., z,) in K[z, ..., z,)]
y
=
g

non-empty varieties in P™: I(V(/)) = V/1 .



Recall about canonical divisors for nonsingular
projective varieties

» Let X C IP” be a nonsingular projective variety with sheaf
of differentials
QX = QX/K-

» Recall, that Q2x is a locally free Ox-module and is
equipped with a universal K-derivation

d: OX — Qx.

» The canonical line bundle of X is the invertible sheaf
dim X

Ky = /\ Qx.

» By a slight abuse of terminology, we also say that Kx is a
canonical divisor.



Recall about ample and very ample line
bundles

» Let L be a line bundle on a nonsingular projective variety
X.

» Recall, that morphisms from X to P are determined by
base point free linear systems |V/|, for

04V CHX, L),

n=dmV —1.

» [ is called very ample if the complete linear system
|H°(X, L)| determines an embedding of X into P,
n=h(X,L)—1.

» L is called ample if L?™ is very ample for some m > 0.



Recall about big line bundles
» Let L be a line bundle on a nonsingular projective variety
X. Then, L is called big if any (and actually all) of the
following conditions holds true:
1. There exists a constant C > 0, which is such that

hO(X, L®m) 2 CmdimX,

for all sufficiently large positive integers m > 0.

2. Denoting by (X, L) the litaka dimension of L, it holds

true that
k(X, L) =dim X.

3. The volume of L:

) hO(X, L®m)
is nonzero.

4. For each ample divisor A on X, there exists a positive
integer m > 0 and an effective divisor E which is such
that

L®™ ~ Ox(A+ E).



Some conjectures for existence, distribution
and accumulation of rational points

» Conj. (Weak Lang Conj.) Let X be a general type
projective variety defined over a number field K. Then,
its set of K-rational points X(K) is not Zariski dense.

» Conj. (Harris and Tschinkel) Let X be a nonsingular
projective variety defined over a number field K. If its
anticanonical bundle —Kx is numerically effective, then
for some finite extension field F/K, its set of F-rational
points X(F) is Zariski dense.

» Conj. (D. McKinnon) If x € X(K) is an algebraic point
in a polarized projective variety (X, L), defined over a
number field K, and if x € C, for some K-rational curve
C C X, then x admits a sequence of best approximation
with respect to L; such an approximating sequence may
be chosen to lie along some rational curve of best
approximation in X and through x.



Motivational comments about Schmidt’s
Subspace Theorem

» Schmidt's Subspace Theorem has emerged as a key tool
for studying rational and integral points in projective
varieties. (Especially following the program of
Corvaja-Zannier.)

» Geometry of numbers, successive minima and Minkowski's
second convex body theorem play a key role in its proof.

» In recent times, a good deal of attention has been given
to geometric and extended general formulations of the
Subspace Theorem.

» For instance, the Subspace Theorem implies General
Diophantine Arithmetic Inequalities for projective
varieties. (This is the work of Ru-Vojta.)

» In turn, such inequalities can be used to deduce instances
of Vojta's Main Conjecture. There is interplay with the
area of K-stability for projective varieties.



Motivational comments about influence of
higher dimensional birational geometry

» An important mechanism that connects all of these
seemingly disjoint topics is:

» the theory of Newton-Okounkov bodies;
» the theory of the Duistermaat-Heckman measures; and
P toric geometry quite generally.

» In what follows, we want to state a classical form of the
Subspace Theorem, give a hint a some of its geometric
applications and explain its relation, for example, to
Vojta's Main Conjecture.



Recall about absolute values

» Suppose that K is a number field of degree
n+2rn=[K:QJ.

» Then K has r; real embeddings and r, pairs of complex
conjugate embeddings.

» There are two kinds of absolute values on K which extend
the usual and p-adic absolute values on Q.

» Such absolute values are classified as being either
Archimedean or non-Archimedean.

» The Archimedean places correspond to embeddings
o : K — C; complex conjugate embeddings are identified.

» The non-Archimedean places correspond to prime ideals
in the ring of integers of K.



Recall about product formula

>

vvyyyvyy

Mg :={|-|,: p a prime number or p = oco}.

| - |oo the usual absolute value on Q.

If pis a prime number, then |p|, = %.

For a number field K, Mk :={| |, : v is a place of K}.
[+ v = [Nk, ()M i v | p, for p e Mg,

Thm. (See e.g., [BG, Prop. 1.4.4]). Let K be a
number field. The set Mk satisfies the product formula:

H x|, =1 for all x € K\ {0}.
ve Mg

Sketch of Proof. WLOG, K= (Q and x is a prime
number. Then

1
IT Ixlo = bl = Sx =1

pEMg



Subspace Theorem set-up

» Let K be a number field with set of places Mk. The
multiplicative projective height of

x=[xo: - :xy) € P"(K)
is defined to be

Hon(1)(X) = 1] IIxllv = max |x;],.

0<i<n
veEMyg veMyk

It is well defined because of the product formula.
» Let S be a finite subset of Mk. For each v € S, let

Coo(X), .-, bun(x) € Ky [x0, - - -, Xn]

be a collection of K-algebraic linearly independent linear
forms.



Subspace Theorem (Multiplicative Projective
formulation)

» Thm. (See e.g., [BG, Thm. 7.2.2]). If ¢ > 0, then
the set of solutions x € P"(K) of the inequality

HH M‘V‘l)(()‘(‘?/‘v < H(X)—n—l—e

veS i=0

lies in a finite union Ty - -|J Ty of proper linear
subspaces of P".

» Example. Lang's formulation of Roth's Theorem, see
e.g., [BG, Thm. 6.2.3], follows from the Subspace
Theorem. The idea is to contemplate consequences of the
Subspace Theorem, when applied to the binary linear
forms

gvo(X) = XOagvl(X) = X1 — QyXp € Kv[X07X1]y

forv e S.



Selected guiding questions for Schmidt’s
Subspace theorem
» As emphasized by Evertse and Schlickewei, the main
guiding questions continue to be

» to algorithmically determine all solutions;

» to give an upper bound for the number of solutions;

P to determine the linear scattering of the Diophantine
exceptional set; and

P to establish generalizations.

» Selected recent results and progress:

» Vojta's Main Conjecture and K-unstable Fano varieties.

» Roth type inequalities and uniform arithmetic
K-instability for polarized kit pairs (X, A).

» Harder and Narasimhan data and central limit theorem
for filtered vector spaces.

» A (Parametric) Subspace Theorem, for linear systems
with respect to twisted height functions and linear
scattering of Diophantine exceptional sets.

» Compactness of Diophantine approximation sets.



Twisted height functions

» The concept of twisted height function arose in work of
Roy-Thunder, Evertse-Schlickewei and Evertse-Ferretti.

» letc, € R, forve S, andi=0,...,n, be such that

zn:cv;zo, forves.

i=0
» For Q > 1, the twisted height function is defined by

Ho(x) := H (Ongla<><n\€\,, @™ CV’) H [Ix1[v

ves vgS

_ [€i(x)]v —cyi
_H (org?gﬁ [|x]]v Q ).H(X)'

veS




Subspace Theorem (Parametric formulation)

» Rmk. These (equivalent) projective and affine forms of
the Subspace Theorem are implied by the Parametric
Subspace Theorem. The parametric formulation, which
was given by Evertse-Ferretti-Schlickewei involves the
twisted height functions.

» Thm. (Evertse-Ferretti-Schlickewei). Let 6 > 0.
Then, there exists a real number (y > 1 and a finite
number of proper linear subspaces T1,..., Ty, C P" such
that for all @ > Qo, thereisa T; € {Ty,..., Tp} with
the property that

{x e P"(K): Ho(x) < Q°} C T.

» Thm. (-). Parametric subspace thm for twisted height
functions and linear systems = FW-type inequalities for
linear systems = Subspace Thm. for linear systems.



Preliminaries for Vojta’s Main Conjecture
» Let X be a projective variety defined over a number field
K and D a Cartier divisor on X and defined over some
finite extension of K. Consider the proximity function

ms(-,D) ==Y _Ap(-v)

for D with respect to a finite set S C Mg of places of K.
» Here, the local Weil functions Ap(-, v) are described as:

Ap(x, v) = — log(v-adic distance from x to D).

» The logarithmic height functions determined by very
ample line bundles L on X are described by:

() = 3 moxlog
ve Mg J

» In general, the height function of an arbitrary line bundle
M on X, (defined over K) is obtained by first expressing
M as the difference of two ample line bundles.



Vojta’s Main Conjecture
» Let X be a non-singular projective variety defined over a
number field K. Let S be a fixed finite set of places of K

and let
D=Dy+---+D,

be a normal crossings divisor on X.

» Conj. (Vojta). Let L be a big line bundle on X, defined
over K, and let € > 0. Then there exists a proper Zariski

closed subset
ZCX

so that for all
x € X(K)\ Z(K)

it holds true that

ms(X, D) + hKX(X) < GhL(X) + O(l)



Vojta’s Main Conjecture: first examples

» E.g. For the case that X = P", L = Ops(1), and
D = Hy + ---+ H,, for H; hyperplanes in general position
and then the inequalities given by Vojta's Main Conjecture
become those of Schmidt’s Subspace Theorem.

» E.g. For the case that X is of general type, then Vojta's
Main Conjecture together with Northcott's theorem, for
finiteness of points of bounded height, implies non-Zariski
denseness of the set of K-rational points in X. In
particular, Vojta's Main Conjecture implies the
Bombieri-Lang conjecture.



Some recent results

» In the direction of Vojta's Main Conjecture, we mention
one important consequence of the Arithmetic General
Theorem ([RV] and [Gri]).

» First, we need to describe one auxiliary concept which
arises in a variety of settings.

» Defn. A Q-Fano variety is a projective variety X, which
has log terminal singularities and ample Q-Cartier
anti-canonical class —Kx.

» Defn. If E is a divisor over a Q-Fano variety X, then let
m: X' — X be a model with E C X’ a Cartier divisor and
put:

B(—Kx, E) := /0 ; Vd(ﬂ;g&iﬁi)_ ) it

This is the expected order of vanishing of —Kx along E.
» E.g. If X =P" and E is a hyperplane, then

B(—Kx,E) =1.




» Thm. (-). Let X be a Q-Fano variety defined over a
number field K. Fix a finite set of places S C Mk. Let E
be a prime divisor over X and having field of definition
some finite extension of K. Assume that §(—Kx, E) > 1.
Fix L a big line bundle on X, defined over K, and let
e > 0. Then there exists a Zariski closed subset Z C X
such that if x € X(K) \ Z(K), then

ms(x, D) + hk, (x) < ehy(x) + O(1).

Here D = D; + - -- 4 Dy is a divisor over X that has the
properties that:

(i) the divisors Dy, ..., Dq are each linearly equivalent to E;
and
(i) the divisors Dy, ..., Dq intersect properly.

» Sketch of Proof. It suffices to establish the inequality
ms(x, D) < (e 4+ 1)h_x, (x) + O(1)

for all x € X(K) \ Z(K) and Z C X some proper Zariski
closed subset. This is implied by [Gri] and/or [RV].



A first example
» To gain some intuition for the conclusion of the Theorem,

consider the following example.

» E.g. When X =P"” and E C P" is a hyperplane, we then
have that

B(—Kx, E) = 1.
The conclusion of the Theorem applied to L = Opx(1) and

D=D;+ -+ Dpya,

for D1, ...,D,.1 a collection of hyperplanes in general
position, recovers the usual statement of Schmidt's
Subspace Theorem.



Influence of Toric Geometry

» The quantities 5(—Kx, E) are related to the
Duistermaat-Heckman measures and have origins in toric
geometry. They have an interpretation via the theory of
Okounkov bodies through the concept of concave
transforms.

» E.g. Consider a toric blowing-up of P! x P!:

71 S(X) = Blgpy (P* x PY) — S(L) = P x P,

Our conventions are such that the primitive ray vectors
for the respective fans ¥’ and X are given by:

Vé = (17 1)7 V{ = (_170)7 Vé = (07 ]-)7
Vé = (17 0)7 Vi = (07 _1)
and

Vi = (—1, 0), Vo = (0, ].), V3(].,0), Vg = (0, —].)



» The polytopes of the divisors, for t € R,
W*Oplxpl(a, b) —tE ~ a7r*D3 + b7T*D4 — tE,

where a,b > 0 and a < b, are cut out by the

inequalities:
> (ml, m2) . (1, ].) > —a+t,
> (ml, m2) (—1,0) 2 07
> (m1> m2) : (07 1) =0,
» (my,mp)-(1,0) > —a,
| (ml,mg) (0,—1) 2 —b



» By determining the areas of these polytopes it follows

that if
_ Vol(an* D3 + br* D, — tE)

f(t) =
(t) Vol(ar*Ds + br*D,)

then
—2%; ifo<t<ag
f(t)= 1+%2—§ ifa<t<b
(o=b0) if b<t<a+b.

» Finally, by integrating f(t), we obtain that

a+b
5Ol b) = B(LE) = [ Flepae =77

» Rmk. This example helps to give intuition as to the more

general statements for calculating expected orders of
vanishing via the theory of concave transforms for

Okounkov bodies. ([Gri], [BKMS], [BC].)



Influence of K-stability

>

>

As another interesting consequence of the Theorem, we
indicate some ideas from K-stability.

Valuative criteria of K-stability (K. Fujita and C.
Li). A Q-Fano variety X is not K-stable if and only if

B(—Kx,E) > 1+ a(X,E)

for at least one prime divisor E over X and defined over
some finite extension of the base number field. Here,
a(X, E) is the discrepancy of E with respect to X.

This criteria for K-stability together with the Theorem
imply the following interesting consequence. It establishes
instances of Vojta's Main Conjecture for Q-Fano varieties,
that have canonical singularieties, are not K-stable.

Cor. (-). Let X be a Q-Fano variety with canonical
singularieties. If X is not K-stable, then the conclusion of
the Theorem holds true for at least one prime divisor E
over X and having field of definition some finite extension
of the base number field.



The case of points of bounded degree

>

>

In general, it remains a non-trivial open problem to obtain
sharp height inequalities for points of bounded degree.
However, there is a conjectural formulation of Schmidt's
Theorem, with discriminant term, for points of bounded
degree. It is a special case of the strong from of Vojta's
Main Conjecture, for points of bounded degree.

Conj. (Levin). Let K be a number field and S a finite
set of places. Let Hy,..., H, C P be a collection of
hyperplanes in general position. Put H = H; + --- 4 H,.
Fix d > 1 and let € > 0. Then, there exists a proper
Zariski closed subset Z C P" such that

ms(x, H) < (n+ 1+ €)ho,,)(x) + dk(x) + O(1)

for all x € P"(K) \ Z(K) with [K(x) : K] < d.
Unconditional subspace type results, for points of
bounded degree, have been given by Levin.



Schlickewei’s Subspace conjecture for points
of bounded degree

>

>

Another point of departure, for bounded degree height
inequalities, is a conjecture, of Schlickewei.

Conj. (Schlickewei). For each v € S, fix linearly
independent linear forms ¢,o(x), ..., f,y(x) in the
polynomial ring K[xo, . .., x,]. Then there exists a positive
constant ¢(n, d) > 0, which depends only on r and d,
which has the following property for each fixed 6 > 0. If

Z C P"(K) is the set of all x = [xp : - - : x,] € P"(K)
which satisfy the conditions that

> > ves 2imo Mv(X) > (c(n, d) + 8)hoy, (1)(x) + O(1);

and “

> [K(x):K]<d,
then there exist finitely many proper linear subspaces
A1, ... Ny in P, each having field of definition with
degree at most d over K, and such that Z is contained in
their union A1 ... [JAs.



An arithmetic general theorem for points of
bounded degree
» Thm. (-). Schlickewei's conjecture implies the following

for a given geometrically irreducible projective variety X
over K. Let Dy, ..., Dy be nonzero effective Cartier
divisors on X and defined over a fixed finite extension
field F/K. Put D = D; + - - - 4+ Dy, and assume that
these divisors D; intersect properly. Let L be a big line
bundle on X. Then, there exist positive constants
v(d, L, D;) so that if € > 0, then

Zy(d, L, D)) *ms(x, D;) < (1 + €) h(x) + O(1)

for all algebraic points

x € X(K)\ (2(K) | Bs(L)(K) | Supp(D)(K) )

with [K(x) : K] < d. Here, Z C X is contained in a finite
union of linear sections Ay, ..., Ay, with degree < d.



Arithmetic uniform K-instability and
(penultimate) Roth’s theorem for klt-pairs
» Thm. (-). Let (X,A) be a Kawamata log terminal pair

defined over a number field K. Let L be an ample line
bundle on X and defined over K. Fix a finite set of places
S C Mg. Foreach v €S, let E, be a prime divisor over
X and having field of definition some finite extension field
of K. Assume that (X, A) is not arithmetically K-stable
with respect to L and E,, for each v € S. Moreover,
suppose that R, € R.q, for v € S, are destabilizing Roth
constants; in particular, the inequality

1< Y A X.D) <> Be(L)R,
vesS ves
is valid. Then, there exists a proper Zariski closed subset

W C X, defined over K, and at least one place v € S, so
that

ag,({xi},L) =2 1/R,.



