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Arithmetic Progressions of

Squares



Consider a primitive, length-three arithmetic progression of square

integers, {a2, b2, c2},

that is:

b2 − a2 = c2 − b2

with a, b, c ∈ N, a ≤ b ≤ c and all three integers are pairwise relatively

prime.

We observe that length-three is the shortest length sequence for which

the term arithmetic progression is at all meaningful.

We also know (due to Euler[1], among others) that there are not any such

nontrivial progressions longer than length-three. So henceforth we are

going to just drop the term length-three as being redundant, and we will

further abbreviate arithmetic progressions as APs.

We have devised a way of counting the number of APs of primitive

integer squares given certain restrictions to the size of the integers.
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Since

b2 − a2 = c2 − b2,

we observe that

a2 + c2 = 2b2 ⇔
( a
b

)2

+
(c
b

)2

= 2.

So we have a bijection between primitive APs of integer squares and

rational points in an octant of a circle of radius
√

2.
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With this correspondence in mind, we state our first theorem,

Theorem 1 (H., Kuan, Lowry-Duda, Walker, 2020)[2]

Fix δ ∈ [0, 1]. For any ε > 0, the number of primitive APs of squares

{a2, b2, c2} with b2 ≤ X and (a/b)2 ≤ δ is

2

π2
arcsin(

√
δ/2)X

1
2 + Oε(X

3
8 +ε).

and observe it can also be stated as an equidistribution result:

Theorem 1 (again)

For any ε > 0, the number of reduced rational points
(
a
b ,

c
b

)
on a circle

with radius
√

2 with b ≤ X within a sector of angle ω is

2ω

π2
X + Oε(X

3
4 +ε).

The main term of this asymptotic is not difficult to see using elementary

methods[5], but the error term is nontrivial.
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Let “APs” mean primitive arithmetic progressions of squares {a2, b2, c2}.

Theorem 2 (H., Kuan, Lowry-Duda, Walker, 2020)[2]

The number of APs with c2 ≤ X is

√
2

π2
log(1 +

√
2)X

1
2 + Oε

(
X

3
8 +ε
)
.

Theorem 3 (H., Kuan, Lowry-Duda, Walker, 2020)[2]

Suppose that Y ≤ X . The number of APs with a2 ≤ Y and b2 ≤ X is

1√
2π2

Y
1
2 log

(
X/Y

)
+

√
2 log(e(4− 2

√
2))

π2
Y

1
2 + Oε

(
X εY

3
8 +ε
)
.

Theorem 4 (H., Kuan, Lowry-Duda, Walker, 2020)[2]

The number of primitive APs with ab ≤ X is

2
√

2

π2 2F1( 1
4 ,

1
2 ,

5
4 ,

1
2 )X

1
2 + Oε

(
X

3
8 +ε
)
.
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Each of the previous asymptotic results are obtained via careful study of

the shifted multiple Dirichlet series,

D(s,w) :=
∞∑

m,n=1
(m,n)=1

r1(h)r1(m)r1(2m − h)

mshw

where r1(n) is the number of ways n can be written as the square of an

integer. So the coefficients of each summand essentially determine

whether or not {h,m, 2m − h} is an arithmetic progression of primitive

squares since

m − h = (2m − h)−m.

In particular, we are able to derive a meromorphic continuation of

D(s,w) to all (s,w) ∈ C2 by means of a spectral expansion. Once we

have a thorough understanding of the analytic behavior of the above

series, we can obtain our aforementioned asymptotic results by carefully

taking inverse Mellin transforms.

To do this, we will take advantage of the automorphic properties of theta

functions.
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Theta Functions



Theta Functions

Let H ⊂ C denote the upper-half plane, H := {z ∈ C | =(z) > 0}.

For N ∈ N, let Γ0(N) denote the congruence subgroup:

Γ0(N) :=

{(
A B

C D

)
∈ SL2(Z)

∣∣∣∣∣ N|C

}
.

It is easy to show that Γ0(N) acts on H by Möbius Maps:(
A B

C D

)
z =

Az + B

Cz + D
.
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Suppose for z ∈ H we define the theta function:

θ(z) :=
∑
n∈Z

e2πin2z =
∞∑
n=0

r1(n)e2πinz = 1 +
∞∑
n=1

r1(n)e2πinz

which is uniformly convergent on compact subsets of H.

For γ =
(
A B
C D

)
∈ Γ0(4), applying Poisson’s summation formula on the

generators of Γ0(4) allows us to prove that

θ (γz) =
(
C
D

)
ε−1
D

√
Cz + D θ(z),

where
(
C
D

)
denotes Shimura’s extension of the Jacobi symbol and εD = 1

or i depending on if D ≡ 1 or 3 (mod 4), respectively.[4]

We refer to θ(z) as a weight 1/2 holomorphic form of Γ0(4).

It turns out that θ(2z) is also a holomorphic form of Γ0(8) with

nebentypus χ(d) :=
(

2
d

)
.
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Thus have that V (z) := y
1
2 θ(2z)θ(z) is a weightless automorphic

function on Γ0(8) with nebentypus χ, that is

V (
(
a b
c d

)
z) = χ(d)V (z) for

(
a b
c d

)
∈ Γ0(8).

Let

〈f , g〉 =

∫∫
Γ0(8)\H

f (z)g(z)
dxdy

y2

denote the Petersson Inner product.

We say f ∈ L2(Γ0(8), χ) if f is an automorphic function of Γ0(8) and

character χ such that 〈f , f 〉 <∞.

While V (z) is an automorphic function of Γ0(8) and character χ, it is not

square-integrable.
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Let

Ph(z , s;χ) :=
∑

γ∈Γ∞\Γ0(8)

χ(γ)=(γz)se(hγz)

denote the level 8, twisted Poincaré series.

We would like to be able to expand:

∞∑
h=1

〈V ,Ph(·, s + 1
2 ;χ)〉

hw
=

Γ(s)

(8π)s

∞∑
m=1

r1(h)r1(m)r1(2m − h)

mshw
.

via the conventional Rankin-Selberg unfolding method.

From there we wish to take a spectral expansion of Ph(·, s;χ) and rewrite

the left-hand side of the above equation as a sum of eigenfunctions and

so obtain a meromorphic continuation of the above shifted Dirichlet

series.

However we require V (z) to be in L2(Γ0(8), χ) to guarantee this spectral

expansion. Thus we have to regularize V (z).
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Now, Γ0(8) has four cusps, ∞, 0, 1
2 and 1

4 and V (z) has polynomial

growth at only ∞ and 0.

Let E (z , s;χ) denote the weight 0, level 8 Eisenstein series with character

χ :=
(

2
d

)
,

E (z , s;χ) = 1
2

∑
γ∈Γ∞\Γ0(8)

χ(γ)=(γz)s .

It turns out that E (z , 1
2 ;χ) also only has polynomial growth at ∞ and 0,

and it matches that of y
1
2 θ(2z)θ(z) at each cusp. What remains has

exponential decay and so we have that:

Ṽ (z) := y
1
2 θ(2z)θ(z)− E (z , 1

2 ;χ) ∈ L2(Γ0(8), χ).

Since Ṽ (z) ∈ L2(Γ0(8), χ), it has a spectral decomposition.
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Ṽ (z) := y
1
2 θ(2z)θ(z)− E (z , 1

2 ;χ) ∈ L2(Γ0(8), χ).
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Ṽ (z) := y
1
2 θ(2z)θ(z)− E (z , 1

2 ;χ) ∈ L2(Γ0(8), χ).
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The Non-Vanishing Spectrum



Generally, if f ∈ L2(Γ0(8), χ) we have a spectral expansion:

f (z) =
∑
j

〈f , µj〉µj(z) +
∑
a

1

4π

∫
R
〈f ,Ea(·, 1

2 + it;χ)〉Ea(z , 1
2 + it;χ) dt,

as summarized by Michel[3]. Here {µj} denotes an orthonormal basis of

Maass cusp forms in L2(Γ0(8), χ), the discrete spectrum, and

Ea(s, z ;χ) is the Eisenstein series for level Γ0(8) with character χ for the

singular cusp a, which correspond to the continuous spectrum.
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Since Eisenstein series on Γ0(8) with χ(d) =
(

2
d

)
only have two singular

cusps, 0 and ∞, the continuous spectrum only has summands arising

from those cusps. Furthermore 〈Ṽ (z),Ea(·, 1
2 + it;χ)〉 = 0 for both cusps

since the constant term of the Fourier expansion of Ṽ (z) is zero at both

cusps.

So the continuous part of the spectrum appears to vanish.

Furthermore, 〈E (z , 1
2 ;χ), µj〉 = 0 for all µj and so the spectral expansion

simplifies to

Ṽ (z) =
∑
j 6=0

〈V , µj〉µj(z)

where we recall that V (z) = y
1
2 θ(2z)θ(z).
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When we computed this, we originally thought we had stumbled into a

contradiction, since we thought 〈V , µj〉 should be zero for all Maass

forms (see last year’s Maine-Québec Number Theory Conference Talk

The Impossible Vanishing Spectrum).

The main reason for this confusion, among other things, was the

observation that 〈V , µj〉 has as a factor:

Res
s=1

L(s,Sym2 µj),

and we believed the symmetric square L-functions of Maass forms were

always entire, which would mean the above residue would be zero.

It turns out that there is subset of Maass forms for which the above

residue exists: Dihedral Maass forms.

That is to say Maass forms whose L-functions are also the L-functions of

Hecke characters. The Dihedral Maass forms are precisely characterized

by the above non-vanishing criteria, and what’s more, the Dihedral Maass

forms for L2(Γ0(8), χ) are relatively easy (compared to non-Dihedral

Maass forms) to explicitly characterize.
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forms (see last year’s Maine-Québec Number Theory Conference Talk

The Impossible Vanishing Spectrum).

The main reason for this confusion, among other things, was the

observation that 〈V , µj〉 has as a factor:

Res
s=1

L(s,Sym2 µj),

and we believed the symmetric square L-functions of Maass forms were

always entire, which would mean the above residue would be zero.

It turns out that there is subset of Maass forms for which the above

residue exists: Dihedral Maass forms.

That is to say Maass forms whose L-functions are also the L-functions of

Hecke characters. The Dihedral Maass forms are precisely characterized

by the above non-vanishing criteria, and what’s more, the Dihedral Maass

forms for L2(Γ0(8), χ) are relatively easy (compared to non-Dihedral

Maass forms) to explicitly characterize.

13



When we computed this, we originally thought we had stumbled into a

contradiction, since we thought 〈V , µj〉 should be zero for all Maass
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So it turns out we get a very explicit spectral expansion for

D(s,w) :=
∞∑

m,n=1
(m,n)=1

r1(h)r1(m)r1(2m − h)

mshw
.

Theorem (H., Kuan, Lowry-Duda, Walker, 2020[2])

The double Dirichlet series D(s,w) has meromorphic continuation to

C2. For Re s and Rew sufficiently large, we have

D(s,w) =
23s(1− 2−2s−2w )

ζ(2)(4s + 4w) log(1 +
√

2)Γ(2s)

×
∑
m∈Z

(−1)mL(2s + 2w , η2m)Γ(s + itm)Γ(s − itm)

in which tm = mπ
2 log(1+

√
2)

, ζ(2)(s) = (1− 1
2s )ζ(s),and η is the Hecke

character defined on ideals of Q(
√

2) by

η
(
(a + b

√
2)
)

= sgn(a + b
√

2) sgn(a− b
√

2)
∣∣∣a + b

√
2

a− b
√

2

∣∣∣ iπ
2 log(1+

√
2)
.
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Theorems 1-4, given at the beginning of this talk were all obtained using

the Phragmén-Lindelöf convexity bound for L(s, η2m) in vertical strips.

L(s, η2m)� (1 + |s + itm|)
1
4 +ε(1 + |s − itm|)

1
4 +ε

on the line Re s = 1
2 + ε.

But we can obtain slight improvements on our error terms by using

known subconvexity bounds for L(s, η2m):

L(s, η2m)� (1 + |s + itm|)α(1 + |s − itm|)α.

where α ≤ 1
4 .

In particular, all of the 3
8 + ε exponents in the errors terms of Theorems

1-4 can be replaced with 1
2 −

1
6+8α + ε.

The current best-known progress for α [6] is α ≤ 103
512 , which would yield

an exponent of 359
974 + ε ≤ 0.36859 + ε. Under the Lindelöf Hypothesis,

we can assume α = 0 which would yield and exponent of 1
3 + ε.
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the Phragmén-Lindelöf convexity bound for L(s, η2m) in vertical strips.

L(s, η2m)� (1 + |s + itm|)
1
4 +ε(1 + |s − itm|)

1
4 +ε

on the line Re s = 1
2 + ε.

But we can obtain slight improvements on our error terms by using

known subconvexity bounds for L(s, η2m):

L(s, η2m)� (1 + |s + itm|)α(1 + |s − itm|)α.

where α ≤ 1
4 .

In particular, all of the 3
8 + ε exponents in the errors terms of Theorems

1-4 can be replaced with 1
2 −

1
6+8α + ε.

The current best-known progress for α [6] is α ≤ 103
512 , which would yield

an exponent of 359
974 + ε ≤ 0.36859 + ε. Under the Lindelöf Hypothesis,
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Notably, the techniques for obtaining the spectral expansion of D(s,w)

could be generally applied to obtain the spectral expansion of any sum of

the form: ∑
m≥1

r1(m)r1(tm ± h)

ms
.

When t = 5 and h = 4, the series∑
m≥1

r1(m)(r1(5m − 4) + r1(5m + 4))

ms

is essentially the Dirichlet series for the Fibonacci sequence.

We are presently exploring how sums of the above type may be used to

characterize other families of second order linear recurrence relations.
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Thanks!
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