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What is a Summation?

Let D ⊆ CN be a set of complex sequences, and write a0 + a1 + . . .
for (an)n≥0 ∈ D

Hardy’s Axioms (1949)

A summation is a function S : D→ C such that

• If S (a0 + a1 + . . .) = A, then S (αa0 + αa1 + . . .) = αA;

• If S (a0 + a1 + . . .) = A and S (b0 + b1 + . . .) = B, then
S ((a0 + b0) + (a1 + b1) + . . .) = A + B;

• If S (a0 + a1 + . . .) = A, then S (a1 + a2 + . . .) = A− a0,
and conversely.
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What is a Summation?

Let R be an integral domain. A (formal) series over R is an
element a0 + a1 + . . . =

∑
n
anσ

n ∈ R[[σ]]

Let E be the algebraic closure of the field of fractions of R

Let D be an R-module with R[σ] ⊆ D ⊆ R[[σ]], such that X ∈ D if
and only if σX ∈ D

Hardy’s Axioms (redux)

A summation from R to E (on D) is an R-module homomorphism
S : D→ E, such that S (B) = B(1) for every B ∈ R[σ], and
S (X ) = S (σX ) for each X ∈ D.
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What is a Summation?

Equivalently, a summation is an R-module homomorphism
S : D→ E which factors through D/(1− σ) and sends 1 to 1

D
S //

�� ��

E

D/(1− σ)

S̃

AA

Write S or (D,S) for the summation (R,D,E,S)

Write S (R,E) for the set of all summations (D,S) from R to E
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Examples

• Sc ∈ S (C,C) defined by Sc
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• SA ∈ S (C,C) defined by SA
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x↗1
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Extending Summations

Fix a summation (D,S) ∈ S (R,E)

Definition

We say (D′,S′) ∈ S (R,E) extends (D,S) if D ⊆ D′ and
S′(X ) = S(X ) for each X ∈ D.

We write S′ ⊇ S if S′ extends S. This is an inductive ordering.

Is there a “best” extension of S?
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Extending Summations

Fix a summation (D,S) ∈ S (R,E)

Definition

We say S′ canonically extends S if for every S′′ extending S, the
summations S′ and S′′ have a common extension Ŝ.

We say S is the fulfillment of S if S extends every canonical
extension of S.

S

Ŝ

S′ S′′

S
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Ŝ

S′ S′′

S



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

Extending Summations

Fix a summation (D,S) ∈ S (R,E)

Definition

We say S′ canonically extends S if for every S′′ extending S, the
summations S′ and S′′ have a common extension Ŝ.
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Extending Summations

Fix a summation (D,S) ∈ S (R,E)

Definition

The telescopic extension of (D,S) is given by

T D := { X | A = B · X for A ∈ D, B ∈ R[σ] with S (B) 6= 0 } ,
T S : X 7→ S (A) /S (B) .

Theorem (Dawson, 1997)

The summation (T D, T S) is the fulfillment of (D,S).



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

Extending Summations

Fix a summation (D,S) ∈ S (R,E)

Definition

The telescopic extension of (D,S) is given by

T D := { X | A = B · X for A ∈ D, B ∈ R[σ] with S (B) 6= 0 } ,

T S : X 7→ S (A) /S (B) .

Theorem (Dawson, 1997)

The summation (T D, T S) is the fulfillment of (D,S).



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

Extending Summations

Fix a summation (D,S) ∈ S (R,E)

Definition

The telescopic extension of (D,S) is given by

T D := { X | A = B · X for A ∈ D, B ∈ R[σ] with S (B) 6= 0 } ,
T S : X 7→ S (A) /S (B) .

Theorem (Dawson, 1997)

The summation (T D, T S) is the fulfillment of (D,S).



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

Extending Summations

Fix a summation (D,S) ∈ S (R,E)

Definition

The telescopic extension of (D,S) is given by

T D := { X | A = B · X for A ∈ D, B ∈ R[σ] with S (B) 6= 0 } ,
T S : X 7→ S (A) /S (B) .

Theorem (Dawson, 1997)

The summation (T D, T S) is the fulfillment of (D,S).



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

Extending Summations

Fix a summation (D,S) ∈ S (R,E)

Definition

The telescopic extension of (D,S) is given by

T D := { X | A = B · X for A ∈ D, B ∈ R[σ] with S (B) 6= 0 } ,
T S : X 7→ S (A) /S (B) .

Theorem (Dawson, 1997)

The summation (T D, T S) is the fulfillment of (D,S).



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

What does T Sc look like?

Example

Let T = 1
1−2σ = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + . . .

Let F = 1− 2σ = 1− 2

We see F · T = 1 and Sc (F ) = −1

Then T Sc (T ) = 1
−1 = −1

Thus T Sc 6= Sc



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

What does T Sc look like?

Example

Let T = 1
1−2σ = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + . . .

Let F = 1− 2σ = 1− 2

We see F · T = 1 and Sc (F ) = −1

Then T Sc (T ) = 1
−1 = −1

Thus T Sc 6= Sc



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

What does T Sc look like?

Example

Let T = 1
1−2σ = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + . . .

Let F = 1− 2σ = 1− 2

We see F · T = 1 and Sc (F ) = −1

Then T Sc (T ) = 1
−1 = −1

Thus T Sc 6= Sc



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

What does T Sc look like?

Example

Let T = 1
1−2σ = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + . . .

Let F = 1− 2σ = 1− 2

We see F · T = 1 and Sc (F ) = −1

Then T Sc (T ) = 1
−1 = −1

Thus T Sc 6= Sc



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

What does T Sc look like?

Example

Let T = 1
1−2σ = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + . . .

Let F = 1− 2σ = 1− 2

We see F · T = 1 and Sc (F ) = −1

Then T Sc (T ) = 1
−1 = −1

Thus T Sc 6= Sc



Summations Multiplicative Summations The Scalar Polynomial Univalent Extension Concluding Remarks

What is a Multiplicative Summation?

Definition

A summation (D,S) ∈ S (R,E) is multiplicative if for all
X ,Y ∈ D, we have XY ∈ D and S (XY ) = S (X )S (Y ).

A summation (D,S) ∈ S (R,E) is weakly multiplicative if it has a
multiplicative extension.

Write MS (R,E) for the set of all multiplicative summations
(D,S) from R to E

Write wMS (R,E) for the set of all weakly multiplicative
summations (D,S) from R to E

Clearly MS (R,E) ⊆ wMS (R,E) ⊆ S (R,E)
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What is a Multiplicative Summation?

Equivalently (D,S) is multiplicative if D is an R-algebra and
S : D→ E is an R-algebra morphism which factors through
D/(1− σ) and sends 1 to 1

D
S //

�� ��

E

D/(1− σ)

S̃

AA

Proposition (2020, Dawson-M.)

Every weakly multiplicative summation S has a unique minimal
multiplicative extension.
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Examples

• Sc defined by Sc

(∑
n
anσ

n

)
:= lim

N→∞

∑
n≤N

an is weakly

multiplicative, but not multiplicative

• A defined by A
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anσ

n

)
:=
∑
n
an is multiplicative

• SA defined by SA
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anσ

n
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x↗1

∑
n
anx

n is multiplicative
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How do S (C,C) and wMS (C,C) compare?

Example

Let A : C[σ]→ C be as above

Let W := exp (σ) = 1 + 1 + 1
2 + 1

6 + 1
24 + 1

120 + 1
720 + . . .

So W−1 := exp (−σ) = 1− 1 + 1
2 −

1
6 + 1

24 −
1

120 + 1
720 + . . .

Define S : C[σ]⊕ C[σ]W ⊕ C[σ]W−1 → C by

S
(
B0 + B1W + B2W

−1) := A (B0)

If S had a multiplicative summation S′, then

1 = S′ (1) = S′
(
W ·W−1) = S′ (W )S′

(
W−1) = 0 · 0 = 0,

an absurdity
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Extending Multiplicative Summations

Fix a multiplicative summation (D,S) ∈MS (R,E)

Definition

We say (D′,S′) ∈MS (R,E) multiplicatively extends (D,S) if
D ⊆ D′ and S′(X ) = S(X ) for each X ∈ D.

We write S′ ⊇ S if S′ multiplicatively extends S. This is an
inductive ordering.
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Extending Multiplicative Summations

Fix a multiplicative summation (D,S) ∈MS (R,E)

Definition

We say S′ canonically multiplicatively extends S if for every S′′

multiplicatively extending S, the summations S′ and S′′ have a
common multiplicative extension Ŝ.

We say S is the multiplicative fulfillment of S if S extends every
multiplicative canonical extension of S.

S

Ŝ

S′ S′′

S
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So what’s the multiplicative fulfillment of S?
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The Scalar Polynomial

Fix a multiplicative summation (D,S) ∈MS (R,E)

For P(t) =
n∑

k=0

Pkt
k ∈ D[t], write

S (P) (t) =
n∑

k=0

S (Pk) tk ∈ E[t]

Definition

We say P(t) ∈ D[t] is a S-minimal polynomial for X if P(X ) = 0,
and degS (P) ≤ degS (Q) for all Q(t) ∈ D[t] with Q(X ) = 0

We define the scalar polynomial sX (t) for X to be 0 if
S (P) (t) = 0, and to be the unique monic scalar multiple of
S (P) (t) otherwise
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The Scalar Polynomial

Example

Let S = A ∈MS (C,C)

Set X := 1+
√
1−4σ+4σ3

2−2σ
= 1− 1− 2− 5− 13− 36− 104− 311− 955 + . . .

Then P(t) = (1− σ)t2 − t +
(
σ + σ2

)
is an A-minimal polynomial

for X

We compute S (P) (t) = −t + 2

Then sX (t) = t − 2
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The Scalar Polynomial

Proposition (Dawson-M., 2020)

Let X be a series, and let x ∈ E. The following are equivalent:

• S has a multiplicative extension which sums X to x

• sX (x) = 0

Definition

We say a series X is S-algebraic if sX (t) is nonconstant
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The Scalar Polynomial

Example

Let S = A ∈MS (C,C)

Set X+ := 1+
√
1−4σ+4σ3

2−2σ
= 1− 1− 2− 5− 13− 36− 104− 311− 955 + . . .

Set X− := 1−
√
1−4σ+σ3

2−2σ
= 0 + 2 + 3 + 6 + 14 + 37 + 105 + 312 + 956 + . . .

Then sX+(t) = sX−(t) = t − 2

Let (D′,A′) be any extension of (C[t],A)

If X+, X− ∈ D′, then X+ + X− = 1
1−σ ∈ D′, an absurdity
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Absolutely S-Algebraic Series

Definition

A series X is absolutely S-algebraic if X is S′-algebraic for every
multiplicative summation S′ extending S

Equivalently, a S-algebraic series X is absolutely S-algebraic if
every extension of S has an extension which sums X

Proposition (Dawson-M., 2020)

Let P(t) be a S-minimal polynomial for X

If degP(t) = deg sX (t) <∞, then X is absolutely S-algebraic
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Absolutely S-Algebraic Series

Example

Let S = A ∈MS (C,C)

Set Y := −1+σ+
√
1+6σ+σ2−4σ3

4−2σ2

= 0 + 1− 1 + 3− 10 + 40− 171 + 767− 3556 + . . .

Then P(t) =
(
2− σ2

)
t2 + (1− σ) t − σ is an A-minimal

polynomial for Y

We compute S (P) (t) = t2 − 1, so sY (t) = (t − 1)(t + 1).

As degP(t) = deg sY (t) = 2 <∞, we see Y is absolutely
A-algebraic
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We compute S (P) (t) = t2 − 1, so sY (t) = (t − 1)(t + 1).

As degP(t) = deg sY (t) = 2 <∞, we see Y is absolutely
A-algebraic
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Absolutely S-Univalent Series

Definition

A series X is S-univalent (with root ρX ) if X is S-algebraic and
sX (t) = (t − ρX )m for some m ∈ N

Essentially, a series X is S-univalent (with root ρX ) if X can only
be summed to ρX by multiplicative extensions of S

Definition

If a series X is S-univalent and absolutely S-algebraic, we say X is
absolutely S-univalent
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Extending Weakly Multiplicative Summations

Definition

The univalent extension of (D,S) is given by

UD := { X | X is absolutely S-univalent with root ρX } ,
US : X 7→ ρX .

Theorem (Dawson-M., 2020)

The summation (UD,US) is the multiplicative fulfillment of
(D,S).
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Extending Weakly Multiplicative Summations

Fix a multiplicative summation (D,S) ∈MS (R,E)

Proof Sketch

Clearly US is a multiplicatively canonical extension of S

Suppose X 6∈ UD. We have three cases:

• Suppose sX (t) has multiple roots. Then there are extensions
of S which sum X to different values, so X is not in the
domain of the multiplicative fulfillment of S

• Suppose sX (t) has no roots (so sX (t) = 1). Then X cannot
be summed in any extension of S, so X is not in the domain
of the multiplicative fulfillment of S

• Suppose X is S-univalent but not absolutely S-univalent.
Then there exists an extension S′ of S for which sX (t) = 1,
and we reduce to the previous case
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What does USc look like?

Example

Set Z := 3−σ+
√
1−6σ+5σ2

2 = 2− 2− 3− 10− 36− 137− 543 + . . .

Then P(t) = t2 − (3− σ)t + (2− σ2) is an Sc -minimal
polynomial for Z

We compute Sc (P) (t) = t2 − 2t + 1, so sZ (t) = (t − 1)2.

Then Z is absolutely Sc -univalent, and US(Z ) = 1.

Thus USc 6= T Sc
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Further Questions

What if E is not algebraically closed? What if E is not a field?

What other conditions can we naturally impose on our
summations?

What happens if we extend our indices from N ⊆ Z to a
submonoid of another abelian group?

Is there a fruitful algebraic-geometric perspective on all of this?
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Thank you for your attention!
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