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Let A be an abelian variety defined over K.
0 — Alp"] — A(Q,) RaLiiN AQ,) — 0,
taking Gg-invariants induces the Kummer map:

ki A(L) ® Qp/Z, — HY(L, A[p™)).
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Motivation: Im(x.) appears in the definition of p-Selmer groups.
» When L/K finite: BSD-conjecture (Bloch-Kato conjecture

(later)).

» When L/K infinite: lwasawa theory.
In the case where the completion L of L is a perfectoid field:
answer by Coates-Greenberg (1996).
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Perfectoid fields

Definition (Scholze, 2012)

A complete non-Archimedean field F of residue characteristic p is a
perfectoid field if its valuation group is non-discrete and the p-th
power Frobenius map on Of/(p) is surjective.

Examples L perfectoid

1. C, =0,

K(pp>=)" cyclotomic extension

. L/K infinite Galois such that Gal(L/K) p-adic Lie group in which
inertia subgroup is open = L perfectoid (Sen, 1972)
K(p*P=)" (non-Galois)
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Theorem (Coates & Greenberg, 1996)

Let A be an abelian variety defined over K. There exists a
sub-Gy-module A[p>]o C A[p°] such that
if L is perfectoid, then

Im(r.) = Im (H(L, A[p™]o) — HY(L, A[p])) .

Applications to (non-commutative) Iwasawa theory:

» Greenberg (2003) “Control theorem" for Selmer groups of
abelian varieties.

» Coates-Howson (2001) computation of Euler-Poincaré
characteristic of Selmer groups of ordinary elliptic curves.
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Bloch-Kato subgroups

V' : p-adic representation of Gk = Gal(Q,/K), i.e.
Gk — GL(V) ~ GL4(@)p) continuous.

T : Z,-lattice in V stable under Gg.
Exponential Bloch-Kato subgroup (1990):

HL(L, V/T) c HY(L, V/T).

Abelian varieties
If T=TyA) = Qmpx A[p"], so that V/T = A[p>°], then

HL(L, V/T) = Im(k.).
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Question (Coates & Greenberg, 1996)
Description of H1(L, V/T) € H}(L, V/T) analogous to Coates &

Greenberg's Theorem?

» When L = K(up~) and V is de Rham, Yes by Berger (2005)
and Perrin-Riou (1992,2000,2001).
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» Precisely, Vj is the minimal sub-Gg-representation of V such
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Proof relies on:
> Fontaine’s theory of almost C,-representations (2003),

P and the classification of vector bundles over the Fargues-Fontaine
curve (2018) (a fundamental result of p-adic Hodge theory).
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If L is perfectoid, then H!(L, A) = 0.
1. A= “ﬁpx A (almost C,-representation).

2. There exists £(A) a Gk-equivariant vector bundle over the
Fargues-Fontaine curve XFF such that

A =T (X (A)).

3. The Harder-Narasimhan slopes of E(fi) are > 0.

4. By Fargues-Fontaine's classification, 3. implies that if Lis
perfectoid, then

HL(L, [(XFF, £(A)) = 0

5. 4. + [p-cohomological dim. of perfectoid fields < 1]
= HY(L, A) = 0.



Thank You!



