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Abelian varieties

Let A be an abelian variety defined over K .

0→ A[pn]→ A(Q̄p) ×pn
−−→ A(Q̄p)→ 0,

taking GL-invariants induces the Kummer map:

κL : A(L)⊗Qp/Zp → H1(L,A[p∞]).
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Iwasawa theory

Question
Description of Im(A(L)⊗Qp/Zp

κL−→ H1(L,A[p∞]))?

Motivation: Im(κL) appears in the definition of p-Selmer groups.
I When L/K finite: BSD-conjecture (Bloch-Kato conjecture

(later)).
I When L/K infinite: Iwasawa theory.

In the case where the completion L̂ of L is a perfectoid field:
answer by Coates-Greenberg (1996).
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Perfectoid fields

Definition (Scholze, 2012)
A complete non-Archimedean field F of residue characteristic p is a
perfectoid field if its valuation group is non-discrete and the p-th
power Frobenius map on OF/(p) is surjective.

Examples L̂ perfectoid

1. Cp = ˆ̄
Qp

2. K (µp∞)∧ cyclotomic extension
3. L/K infinite Galois such that Gal(L/K ) p-adic Lie group in which

inertia subgroup is open ⇒ L̂ perfectoid (Sen, 1972)
4. K (p1/p∞)∧ (non-Galois)
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Coates & Greenberg’s Theorem (1996)

Theorem (Coates & Greenberg, 1996)
Let A be an abelian variety defined over K.

There exists a
sub-GK -module A[p∞]0 ⊂ A[p∞] such that
if L̂ is perfectoid, then

Im(κL) = Im
(
H1(L,A[p∞]0)→ H1(L,A[p∞])

)
.

Applications to (non-commutative) Iwasawa theory:
I Greenberg (2003) “Control theorem” for Selmer groups of

abelian varieties.
I Coates-Howson (2001) computation of Euler-Poincaré

characteristic of Selmer groups of ordinary elliptic curves.
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Bloch-Kato subgroups

V : p-adic representation of GK = Gal(Q̄p/K ), i.e.

GK → GL(V ) ' GLd (Qp) continuous.

T : Zp-lattice in V stable under GK .
Exponential Bloch-Kato subgroup (1990):

H1
e(L,V /T ) ⊂ H1(L,V /T ).

Abelian varieties
If T = Tp(A) = lim←−p× A[pn], so that V /T = A[p∞], then

H1
e(L,V /T ) = Im(κL).
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Generalisation of Coates & Greenberg’s Theorem?

Question (Coates & Greenberg, 1996)
Description of H1

e(L,V /T ) ⊂ H1(L,V /T ) analogous to Coates &
Greenberg’s Theorem?

I When L = K (µp∞) and V is de Rham, Yes by Berger (2005)
and Perrin-Riou (1992,2000,2001).
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Theorem 1 (P. 2020)
Assume V is de Rham with Hodge-Tate weights 6 1.

There exists a sub-GK -module V0/T0 ⊂ V /T such that
if L̂ is perfectoid, then

H1
e(L,V /T ) = Im

(
H1(L,V0/T0)→ H1(L,V /T )

)
.

I Precisely, V0 is the minimal sub-GK -representation of V such
that the Hodge-Tate weights of V /V0 are all 6 0.

I If T = Tp(A), then Theorem 1 recovers Coates & Greenberg’s
Theorem.

Proof relies on:
I Fontaine’s theory of almost Cp-representations (2003),
I and the classification of vector bundles over the Fargues-Fontaine

curve (2018) (a fundamental result of p-adic Hodge theory).
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Encore: proof for abelian varieties

Let A be an abelian variety defined over K . May assume A has
semi-stable reduction.
Â : commutative formal group associated to a Néron model of A,

Vp(Â) = Vp(A)0 ⊂ Vp(A), so Â[p∞] = A[p∞]0.

1.

0 Â(mL)⊗Qp/Zp H1(L, Â[p∞]) H1(L, Â) 0

0 A(L)⊗Qp/Zp H1(L,A[p∞]) H1(L,A)[p∞] 0

0

κL

2. If L̂ is perfectoid, then H1(L, Â) = 0.
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1.
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0 Â(mL)⊗Qp/Zp H1(L, Â[p∞]) H1(L, Â) 0

0 A(L)⊗Qp/Zp H1(L,A[p∞]) H1(L,A)[p∞] 0

0

κL

2. If L̂ is perfectoid, then H1(L, Â) = 0.
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2. There exists E( ˜̂A) a GK -equivariant vector bundle over the
Fargues-Fontaine curve XFF such that

˜̂A ' Γ(XFF, E( ˜̂A)).

3. The Harder-Narasimhan slopes of E( ˜̂A) are > 0.

4. By Fargues-Fontaine’s classification, 3. implies that if L̂ is
perfectoid, then

H1(L, Γ(XFF, E( ˜̂A)) = 0.

5. 4. + [p-cohomological dim. of perfectoid fields 6 1]
⇒ H1(L, Â) = 0.
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1. ˜̂A = lim←−p× Â (almost Cp-representation).

2. There exists E( ˜̂A) a GK -equivariant vector bundle over the
Fargues-Fontaine curve XFF such that

˜̂A ' Γ(XFF, E( ˜̂A)).

3. The Harder-Narasimhan slopes of E( ˜̂A) are > 0.

4. By Fargues-Fontaine’s classification, 3. implies that if L̂ is
perfectoid, then

H1(L, Γ(XFF, E( ˜̂A)) = 0.

5. 4. + [p-cohomological dim. of perfectoid fields 6 1]
⇒ H1(L, Â) = 0.
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Thank You!


