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bundle.
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The Riemann-Roch and Lefschetz formulas

e RR-Hirzebruch: X(X F)= [, Td(TX)ch(F).
o Lefschetz-RR: L (g fX Td, (TX)ch, (F)

e Proof based on a Su1table deformation (normal cone,
embeddings .. .)
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e X Riemann surface of constant scalar curvature —2, I,
length of closed geodesics 7.
°

Tr [exp (tA%/2)] = %5/8)\/01 (X)

N~ N J/

Laplacian o~
geodesic flow

2 y/2 dy
e (/20) e

Vol, exp ( 62/275—25/8)
Z V2rt  2sinh (¢,/2)

770
e Explicit evaluation of orbital integrals.
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Selberg’s explicit formula as a local formula

@ The left-hand side is global, the right-hand side is
‘local’.

@ The formula in the right-hand side looks like
Riemann-Roch.

© Is Selberg explicit formula a Riemann-Roch formula ?

© Is there a global-local deformation principle?
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A reductive Lie group

e G reductive Lie group, K maximal compact.
e g =p @t Cartan splitting.
e B invariant bilinear form > 0 on p, < 0 on &.

e X = (G/K symmetric space, Riemannian with
curvature < 0.

G =SL, (R), K = S', X upper half-plane.
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Explicit formulas for semisimple orbital integrals

A locally symmetric space

e ' C G torsion free discrete subgroup.
e Z =T\ X compact locally symmetric space.

e pZ. pX smooth heat kernels on X, Z.

Selberg: Tr¢™(%R) [etAZ/Q] =1 VOIMTrM ]

b [pﬂ orbital integral.

T (5] = [, P (97" 79) dg.

Orbital integrals considered as generalized Euler
characteristic.

e Will be computed explicitly by Riemann-Roch formula.

Jean-Michel Bismut Riemann-Roch and the trace formula 9/ 40



Euler characteristic and heat equation

Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’
References

More general orbital integrals

Jean-Michel Bismut Riemann-Roch and the trace formula 10 /40



Euler characteristic and heat equation

Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

More general orbital integrals

e (9 Casimir operator on GG generalized Laplacian.

Jean-Michel Bismut Riemann-Roch and the trace formula 10 /40



Euler characteristic and heat equation

Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics

References

More general orbital integrals

e (9 Casimir operator on GG generalized Laplacian.

e p: K — Aut (F) representation, descends to vector
bundle F' on X.

Jean-Michel Bismut Riemann-Roch and the trace formula 10 /40



Explicit formulas for semisimple orbital integrals

More general orbital integrals

e (9 Casimir operator on GG generalized Laplacian.

e p: K — Aut (F) representation, descends to vector
bundle F' on X.

e (7 acts as C%* on C™ (X, F).

Jean-Michel Bismut Riemann-Roch and the trace formula 10 /40



Explicit formulas for semisimple orbital integrals

More general orbital integrals

e (9 Casimir operator on GG generalized Laplacian.

e p: K — Aut (F) representation, descends to vector
bundle F' on X.

e (7 acts as C%* on C™ (X, F).

e For t > 0, Trl [exp (—tC’g’X/Q)] orbital integral for
heat kernel on C* (X, F').
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The centralizer of

@ v € (G semisimple, y = ek, a € p,k € K,
Ad (k) a = a.

e Z(vy) C G centralizer of ~.

e Z () reductive group, 3 (v) =p (y) ® &(y) Cartan
splitting.
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Explicit formulas for semisimple orbital integrals

Semisimple orbital integrals

Theorem (B. 2011)
There is an explicit function 7, (Y{), Yy € it (7), such that

exp (— |al? /2
T [exp (— (CmX —c)/2)] = p((27r1|5)1|’/2/ 2

[, 7 08 [ (172e7)]

exp (— |Y(ﬂ2 /225)

dYy
(2mt)4/?

Note the integral on (7). ..
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Applications

e In work with Shu SHEN, we extended our formula to
arbitrary elements of the center of the enveloping
algebra.

e Harish-Chandra had obtained non-explicit formulas in
terms of Cartan subalgebras.

@ On complex locally symmetric spaces, Riemann-Roch
and “automorphic Riemann-Roch”.

e Applications to eta invariants and analytic torsion.
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Explicit formulas for semisimple orbital integrals

The method

e We will use cohomological methods.
@ Global-local interpolation.

o We proceed formally as in the heat equation method
for RR-Hirzebruch and Lefschetz RR.
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(QO" (X, F) ,5X> Dolbeault complex, cohomology

H* (X, F).

¢™* Kéhler metric, AN adjoint of 9, DX =9+
Dirac operator.

DX? = [EX,EX*] Hodge Laplacian.

McKean-Singer: For any s > 0,

L(g) = Trg [g exp (—SDX’2)].

T gexp(—sD%2)] 150

® L (9)]s=+oo » Fixed point formula |s—g.
\ / NS -~ >
global local
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The heat operator of X

e X compact Riemannian manifold.
e AX Laplacian on X.

e Fort >0, g=-exp (tAX/Z) heat operator acting on
C>*(X,R).
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Can I find a resolution C* (X, R) by a complex (R, d)?
Does (R, d) have a Hodge theory?
Does the heat kernel g lift to (R, d)?

Can I write a formula of the type

© 0060

TR [g] = T, [gexp (—D3F,/2)] -

@ By making b — 400, do we obtain Selberg’s trace
formula ?

O Is Selberg’s trace formula a Lefschetz formula?

Jean-Michel Bismut Riemann-Roch and the trace formula 18 /40
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Trs [g exp(—sDX’2)] [s>0

L(9) |s=to0 » Fixed point formula |s—o.
global local
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The analogy

Trg [g exp(—sDX’2)] [s>0

L(9) |s=+oc » Fixed point formula | ;.
S——— ~~
global local

Teoexp(~ D)o

TR [g), _, > Selberg t.f.[p— 1o -
N ~~ o N -~ J
global local via closed geodesics

Jean-Michel Bismut Riemann-Roch and the trace formula 19 /40



Euler characteristic and heat equation

Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’
References

1. Finding a resolution of C*° (X, R)

Jean-Michel Bismut Riemann-Roch and the trace formula 20 /40



Euler characteristic and heat equation

Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’

References

1. Finding a resolution of C*° (X, R)

e Is C* (X, R) the cohomology of ‘some complex’ ?

Jean-Michel Bismut Riemann-Roch and the trace formula 20/ 40



Euler characteristic and heat equation

Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics

References

1. Finding a resolution of C*° (X, R)

e Is C* (X, R) the cohomology of ‘some complex’ ?
@ F real vector bundle on X.

Jean-Michel Bismut Riemann-Roch and the trace formula 20/ 40



Explicit formulas for semisimple orbital integrals

1. Finding a resolution of C* (X, R)

e Is C* (X, R) the cohomology of ‘some complex’ ?
e E real vector bundle on X.
o R=(Q°(F),d") fibrewise de Rham complex.

Jean-Michel Bismut Riemann-Roch and the trace formula 20/ 40



Explicit formulas for semisimple orbital integrals

1. Finding a resolution of C* (X, R)

e Is C* (X, R) the cohomology of ‘some complex’ ?
e E real vector bundle on X.
o R=(Q°(F),d") fibrewise de Rham complex.

e By Poincaré lemma, cohomology is equal to

> (X,R).

Jean-Michel Bismut Riemann-Roch and the trace formula 20/ 40
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e Standard Laplacian on fibers of F has continuous
spectrum.
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volume exp (— \Y\Q) dy.
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2. Does the resolution have a Hodge theory?

o (E,g") real Euclidean vector bundle.

e Standard Laplacian on fibers of F has continuous
spectrum.

e If Y tautological section of E on &£, use instead the
volume exp (— \Y\2) dy.

@ The corresponding fiberwise Laplacian is a harmonic
oscillator, has discrete spectrum, and Hodge theory
holds.
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2. Does the resolution have a Hodge theory?

(E, g%) real Euclidean vector bundle.

Standard Laplacian on fibers of E has continuous
spectrum.

If Y tautological section of E on &, use instead the
volume exp (— \Y\2) dy.

The corresponding fiberwise Laplacian is a harmonic
oscillator, has discrete spectrum, and Hodge theory
holds.

The function 1 on E is Ly and fiberwise harmonic.

Jean-Michel Bismut Riemann-Roch and the trace formula 21 /40
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3. Does g lift to a morphism of complexes?

exp (tA%/2) morphism of (Q° (E,R),d")?
A% should lift and commute with d.
In general, the answer is no!

On locally symmetric spaces, the Casimir restricts to
AX | lifts to everything, and commutes with everything.

FE should be related to TX ...

...since we look for closed geodesics.

Jean-Michel Bismut Riemann-Roch and the trace formula 22 /40
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The case of symmetric spaces

o (G reductive Lie group, K maximal compact.

e g =p @ ¢ Cartan splitting of g equipped with bilinear
form B...

e X = G/K symmetric space.
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The case of symmetric spaces

o (G reductive Lie group, K maximal compact.

e g =p @ ¢ Cartan splitting of g equipped with bilinear
form B...

e X = (/K symmetric space.
@ g =p @ ¢ descends to bundle of Lie algebras T'X & N.

One should expect G x g to play an important role in the
construction.

Jean-Michel Bismut Riemann-Roch and the trace formula 23 /40
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The algebraic de Rham complex on g

o A(g*) =A(g") ® S (g*) polynomial forms on g.

o (A(g*),d®) de Rham complex, d® = ¢’ ® V...

e Y section of g, iy = > 7., ® €.

e For any nondegenerate symmetric form on g, d®* = iy.

o [d iy] = NAW) (d9 4 iy)® = NAW),

o (A(g*),d?) resolution of R (algebraic Poincaré
lemma).

Jean-Michel Bismut Riemann-Roch and the trace formula 25 /40



Euler characteristic and heat equation

Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics’
References

Casimir and Kostant on G



Euler characteristic and heat equation

Explicit formulas for semisimple orbital integrals
Hypoelliptic Laplacian and orbital integrals
Hypoelliptic Laplacian, math, and ‘physics

References

Casimir and Kostant on G

o (%= -5 ee; Casimir (differential operator on G),
positive on p, negative on £.

Jean-Michel Bismut Riemann-Roch and the trace formula 26 / 40



Hypoelliptic Laplacian and orbital integrals

Casimir and Kostant on G

o (%= -5 ee; Casimir (differential operator on G),
positive on p, negative on £.

e ¢(g) Clifford algebra of (g, —B) acts on A (g*).

Jean-Michel Bismut Riemann-Roch and the trace formula 26 / 40



Hypoelliptic Laplacian and orbital integrals

Casimir and Kostant on G

o (%= -5 ee; Casimir (differential operator on G),
positive on p, negative on £.

e ¢(g) Clifford algebra of (g, —B) acts on A (g*).

e U (g) enveloping algebra (left-invariant differential
operators on G).

Jean-Michel Bismut Riemann-Roch and the trace formula 26 /40



Hypoelliptic Laplacian and orbital integrals

Casimir and Kostant on G

o (%= -5 ee; Casimir (differential operator on G),
positive on p, negative on £.

e ¢(g) Clifford algebra of (g, —B) acts on A (g*).

e U (g) enveloping algebra (left-invariant differential
operators on G).

o DX ¢ ¢(g) ® U (g) Dirac operator of Kostant.

Jean-Michel Bismut Riemann-Roch and the trace formula 26 /40



Hypoelliptic Laplacian and orbital integrals

Casimir and Kostant on G

C? = =) efe; Casimir (differential operator on G),
positive on p, negative on £.

e ¢(g) Clifford algebra of (g, —B) acts on A (g*).

e U (g) enveloping algebra (left-invariant differential
operators on G).

o DX ¢ ¢(g) ® U (g) Dirac operator of Kostant.

o DKo =3(ef)e; + 5C(—r9).
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Theorem (Kostant)

D2 = —C%+ B* (p*, ).
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Theorem (Kostant)

D2 = —C%+ B* (p*, ).

Remark

e DX° acts on O (G,R) ® A (g*), while C® acts on
C>= (G, R).

Jean-Michel Bismut Riemann-Roch and the trace formula 27 /40



Hypoelliptic Laplacian and orbital integrals

A formula of Kostant

Theorem (Kostant)

D2 = —C%+ B* (p*, ).

Remark

e DX° acts on O (G,R) ® A (g*), while C® acts on
C>(G,R).

e Solution: tensor by S (g*), and use the fact that
Agr) @ S(g") =~ R.

Jean-Michel Bismut Riemann-Roch and the trace formula 27 /40
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Reconciling G and g

e d°+ iy acts on A (g*) ® S (g*).
o DX° acts on C* (G, R) ® A (g*).

o For b >0, D, = DX + 3 (d 4 iy) acts on
C* (G, R) @ 5(g") @ A(g").

Jean-Michel Bismut Riemann-Roch and the trace formula 28 /40
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Reconciling G and g

d® + iy acts on A (g*) ® S (g*).

DX acts on C (G, R) ® A (g*).

For b > 0, ©, = D¥° + 3 (d 4 iy) acts on
C>*(G,R)® S (g*) @ A(g%).
C*(G,R)®S(g")®@A(g*) C C® (G xg,R)®A(g").

(]
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@ The above objects are K-invariant.
@ g descend a flat bundle TX & N of Lie algebras on X.
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@ The above objects are K-invariant.
@ g descend a flat bundle TX & N of Lie algebras on X.

e S(g") ® A(g*) descends to fiberwise polynomial forms
on TX @ N.

e D, descends to D;* acting on
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Descending the constructions to X

The above objects are K-invariant.
g descend a flat bundle TX & N of Lie algebras on X.

S (g*) ® A (g*) descends to fiberwise polynomial forms
onTX @ N.

e D, descends to ;¥ acting on

Co(X,S(T"X DN )@A(T"X ®N*)® F).
S(T*X & N*) @ A(T*X & N*) infinite dimensional
vector bundle on X.

Jean-Michel Bismut Riemann-Roch and the trace formula 29 /40
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Algebraic and smooth de Rham

e Using bilinear form B, the commutation relations of
operators acting on S (g*) [agi , Yj] = jj. .-
@ ...have representation in terms of operators acting on

o] el j o) j
Los gyn = gy, Y? = =gy T V7.
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Algebraic and smooth de Rham

e Using bilinear form B, the commutation relations of
operators acting on S (g*) [631‘ , Yj] = jj. .-

@ ...have representation in terms of operators acting on
Ly, 5% — 52 Y7 — -2 4+ Y7,

e Bargmann isomorphism, (A (g*),d®) — (°*(g,R), d%)

Ly de Rham complex with volume exp (— |Y|2) dY.

Jean-Michel Bismut Riemann-Roch and the trace formula 30/ 40
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X
The operator D;

e X total space of TX & N over X.
e D acts on C® (X, 7* (A (T*X & N*) ® F)).
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X
The operator D;

e X total space of TX & N over X.
e D acts on C* (X, 7" (A (T*X ® N*) @ F)).
°o D) = DKOX—H( ([Ye,ve]) +

K()st ant

L(d™ON £V A+d™E iy ).

TV
de Rham—Witten
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X
The operator D;

e X total space of TX & N over X.
e D acts on C* (X, 7" (A (T*X ® N*) @ F)).
°o D) = DKOX—H( ([Ye,ve]) +

K()s‘r ant

L(d™ON £V A+d™E iy ).

de Rheu;:VVitten
@ The quadratic term is related to the quotienting by K.

Jean-Michel Bismut Riemann-Roch and the trace formula 31 /40
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The hypoelliptic Laplacian

o Set £X = L (—D¥e2 4 X?),

1
2
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The hypoelliptic Laplacian

C* X, TATXEN)RFEF).

Remark

Using the fiberwise Bargmann isomorphism, £\ acts on

C*(X,S(T*X ® N )QA(T* X @ N*) Q@ F).

Jean-Michel Bismut Riemann-Roch and the trace formula 32 /40
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The hypoelliptic Laplacian as a deformation

NAT*XoN*)

b2

rx — % | [YN’}/TX] |2_|_21b2 (_ATX@N n |Y|2 - n) n

TV
Harmonic oscillator of TX®N

J/

—_

+3< Vyrx, +¢ (ad (YT¥))—c (ad (Y™) + ifad (YN))>,

geodesic flow
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The hypoelliptic Laplacian as a deformation

NAT*XoN*)

b2

1 1 ‘
EX — 5 | [YN,YTX] |2+@ (_ATX@N + |Y|2 - n) +

TV
Harmonic oscillator of TX®N

J/

b

geodesic flow

_|_1 ( &/:_X/ —|—E(ad (YTX))—C (ad (YTX) + i0ad (YN))> )

Remark

L;¥ not self-adjoint, not elliptic, hypoelliptic (has heat
kernel).

Jean-Michel Bismut Riemann-Roch and the trace formula 33 /40
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Three fundamental properties of the hypoelliptic
Laplacian (B. 2011)

Q@ eb—0, L — 5 (C% —c¢): X collapses to X (B.
2011).

©Q e b — +00, geodesic f. Vyrx dominates = closed
geodesics.

Q If v € G semisimple, for b > 0,t > 0,

Tyl [exp (—t (C¥* —¢) /2)] = Tr, [ [exp (—tL£))] .
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Hypoelliptic Laplacian and orbital integrals

The limit as b — 400

o Asb — +oo,
X bt TX v N7|? yTX
gb:_QHY RS RE AR

o VYV generator of geodesic flow ultimately dominates.
e Forces orbital integral to localize on geodesics.

e Gives explicit formula for orbital integrals.

Jean-Michel Bismut Riemann-Roch and the trace formula 35 /40
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e Interpolation by operators

LE o0
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e Interpolation by dynamical systems
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&= |0 P& =0 p—too-
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Brownian motion geodesic
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The Langevin equation

e In 1908, on R3, Langevin introduced the Langevin
equation mx = —& + w. ..

@ ...to reconcile Brownian motion # = w and classical
mechanics: & = 0.

e In the theory of the hypoelliptic Laplacian, m = b® is a
mass.

e Welcome to Hodge theory with mass!
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Langevin (C.R. de I’Académie des Sciences 1908)

Une particule comme celle que nous considérons, grande par rapport & la distance
moyenne des molécules du liquide, et se mouvant par rapport a celui-ci avec la vitesse £
subit une résistance visqueuse égale 4 — 6rp.az d’aprés la formule de Stokes. En réalité,
celte valeur n’esl qu'une moyenne, et en raison de Pirrégularité des chocs des molé-
cules environnantes, 'action du (luide sur Ia particule oscille autour de la valeur
précédente, de sorte que 'équation du mouvement est, dans la direction «,

d’x dr .
(3) nlgﬁ-:——ﬁﬁyam_}_)‘_

Sur la force complémentaire X nous savons qu'elle est indifféremment positive et néga-
live, et sa grandeur est telle qu’elle maintient Pagitation de la particule que, sans elle,
la résistance visqueuse finirait par arréter.
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