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Motivation and Background



Inverse Galois Problem

If G is a group and K is a field, can we find/parameterize all
G-extensions of K7

Kummer theory: if char(K) # p and ¢, € K:
Elementary p-abelian o [F, — subspaces
extensions of K of| K*/K*P
Artin-Schreier theory: if char(K) = p:

Elementary p-abelian o FF, — subspa
extensions of K of|[K/p(K)

)




More structure —> more structure

Proposition (Waterhouse,S-)

If M is an IF,-subspace of J(K), and L/K its extension, then
L/F Galois iff M is an F,[Gal(K/F)]-module.

In fact, Gal(L/F) can be computed in terms of module
structure of M and some field-theoretic data.




What’s been done

Gal(K/F) Module Caveats
Z/p"Z J(K) 0
Z/p"Z EX/EXP’ char(E) # p
Z/pL Hi(K,F,) &€ K
7./p"Z H(K,F,) ¢, € K and embedibility

7/ pZ Ki(K)/p°Ki(K) char(K) =p



The general trend

Modules have far fewer classes of indecomposable modules
than one would expect

Punchline: Maximal pro-p quotient of absolute Galois group
isn't a generic pro-p group

Corollary

Let p > 2. Define v(G, F) as number of G-extensions of F.
Then v(M,, F) is

(P~ 1)v(Hys, F) + ((dimmle(F))p - (dimrlm ‘ﬁ)p) “f)_f)'.

. i
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“non-embeddable” Z/pZ-extensions of F




Moving away from cyclic extensions

How can we dip our toe into the non-cyclic cases?

Let G be as simple as possible ~~ G = Z/27 ® 7./27



Structure of K*/K*?



K =F(Va1,Va)
0i(v3) = (1) /3

G =Gal(K/F)~Z/2Z & Z/2Z

K

N\

[v] € K*/K*? is class of \

KiF(v/a1) KsF(/a1a:) Ko F (V/22)
v €K™

[v]; € K /K% is class of v € K; \ /

F




Warning: graphic content
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A sample of F,[Z/27 & 7 /27Z]-indecomposables

For n > 0, there are 2 indecomposables of dimension 2n + 1

******
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Our module decomposition

Theorem [Chemotti, Minag, S-, Swallow]
Suppose char(K) # 2 and Gal(K/F) ~ Z/2Z ® Z/27. Then

K)K?P~010QdQrdQd@QdQadX,

where

e O, is a direct sum of modules isomorphic to Q!; and

e for each j € {0,1,2,3,4}, the summand Q; is a direct
sum of modules isomorphic to F»[G/H;]; and

e X is isomorphic to one of the following:
{0}, Fy, F, & o, 9717 Qiz, or Qe QL
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Sketch of proof




Playbill

Lemma (Exclusion lemma)
If U,V C W are F,[G]-modules, then

UnvV ={0} < U°NnV®=1{0}

Strategy: Focus on (K*/K*?) = [F*]+77

Act I: Build a big module Y with Y€ = [FX] C (K*/K*?)®
Act Il: Build a big module X “over” a complement to [F*]
Act IIl:  Show X + Y spans
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Sketch of proof

Act I: Building over [F*]



Act |I: maximize preimages, minimize generators

[12]

C /”\ N,

(K12 [K1

\[f]/

oA ={[f]:3[K]>...}

(]

[ )

[f]
¢e={[fl:3]>...} 13

(]

[1] (]

c={[fl:3]>...} D ={[f]:31]>...}






Act |I: Conclusion

Proposition
There exists a submodule Y whose fixed part is [F*], and
which is a direct sum of modules isomorphic to

e F,[G/H] for i € {0,1,2,3,4}
o Q!

ii5)



Sketch of proof

Act 1l: Filling out (K*/K*?)¢



Act Il: WTF

Lemma (Whether ’tis [f])
For [y] € (K*/K*?)¢, the following are equivalent:
e [V elF]
o Gal(K(\/7)/F) ~ Z/2Z & Z/2Z & 7./2T.
/Ki

o [7] €[ ker ( KX/K“L

=il

K_x /K>< 2 )
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Act |I: How we build a complement

[F~] is kernel of T : J¢ — @2 (KX N K*?)/K>? given by

T(IVD) = (INik/i (NN, [Nk (1] [N /1 (1)]3)

Goal: Find “big" preimage for im(T) that has trivial
intersection with [F*]

What we get depends on im(T)
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Act Il: An example

Suppose [x] € ([NK/KI(KX)] N [Nk/w, (K*)] N JG) \ ker(T)
~ exists [11], [72] so that [N,k (7i)] = [X]
~» dim (T({[x], [Nk/r, (72)]; [Nk /io(72)]})) = 3

[72] [71]

7N SN ol

[Nk /i, (72)] x] Neo(n)]
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Act |l: Another example

Suppose that im(T) = {([1]1, [v]2, [w]3}
~ solvability of certain “small” Galois embedding problems

~ solvability of particular “large” Galois embedding problem

~ exists [7] so that im(T) = T ({[Nk/k, (7)), [Nk, ()]})
o |
7N it

Nk Nk
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Act II: Constructing X

Proposition

Suppose {im(T)} # {[1]1,[1]2,[1]3}. Then there exists
X € J(K) with T(X®¢) =im(T), so that X is isomorphic to

( T, if dimg, (im(T)) = 1
Q1 if im(T) is a "coordinate plane”

< Fr @ Ty, if im(T) is a "non-coordinate plane”
02, if T([Nic i, (K*)] 0 [Nic /i, (K*)] N J) nontrivial
Q1e Q1 else.

Note: in final case dim (X N [F*]) = 1. Requires small Y
tweak.
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Sketch of proof

Act Ill: Putting it all together



Act Ill: Gotta catch 'em all

X+Y =X&Y by “exclusion lemma”. Do they span?

Case 1: Suppose ([7]) ~ F,
~» Can assume T([v]) = ([1]1, [1]2, [1]3) by X
~ We picked up all of [F*] in Y&
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Act Ill: Still gotta catch 'em all

Case 2: Suppose ([7]) ~ Fo[G/H,].
~» Can prove T([Nk/i,(7)]) = ({11, [1]2 [1]3)
~ [Nk (V)] = [fl € €
~» Jly] € Y with same images under 1 + o;

~ D/D =} or (W/VD) =F2 v

[7] v]
VAN SN

[1] [Nic/i (M1 [1] []
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Act Ill: Almost caught 'em all

Case 3: Suppose that ([7]) ~ Q*
~ Can assume {[7])¢ C ker(T) by X's construction
~ Lemma: [F*] N [Nk (K*)] €D - €&
~» Can “cut down" to a module type already checked
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Act Ill: Cutting the module

[71.3] [71,2] []

() VRN
(3] [f2] = [Nk/k()]  [Nkywo(7)]

ce¢ €9 € [FX]

Then ([V][v23][712]) 7 = [1]

~+ 50 ([V][71,3][71.2]) is some previous case.
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Thank you!
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