

Modular Properties of elliptic genus of Hilbert Scheme of Points on \mathbb{C}^2

AMBREEN AHMED

ABSTRACT

The elliptic genus of a compact complex manifold can be defined as the integral over M of some multiplicative class. If the first Chern class of M vanishes, then the elliptic genus of M is a Jacobi form. We will discuss the elliptic genus for non-compact manifold, in particular, the Hilbert scheme of points on \mathbb{C}^2 which we will be denoted by $\mathrm{Hilb}^n[\mathbb{C}^2]$ and we will also discuss its recursive structure in terms of Hecke operators.

Modular Forms

A modular form of weight $w \in \mathbb{Z}$ is a holomorphic function on H and at the cusp P_{∞} satisfying the following functional equation

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^w f(\tau), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$$

Its Fourier series is of the form $f(\tau) = \sum_{n=0}^{\infty} a(n)e^{2\pi i n \tau}$. If a(0) = 0, then the modular form f(t) = 0 is referred to as the weight f(t) = 0 to f(t) = 0.

Jacobi Forms: Let $w \in \mathbb{Z}$, $\ell \in \mathbb{Z}^+$, $\tau \in H$, $z \in \mathbb{C}$. A Jacobi form is a holomorphic function $J: H \times \mathbb{C} \to \mathbb{C}$ which satisfies the following modular and elliptic properties:

$$J(\frac{a\tau+b}{c\tau+d}, \frac{z}{c\tau+d}) = (c\tau+d)^w e^{\frac{2\pi i\ell cz^2}{c\tau+d}} J(\tau, z)$$
$$J(\tau, z + u\tau + v) = e^{-2\pi i\ell(u^2\tau + 2uz)} J(\tau, z),$$

where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ and $u,v \in \mathbb{Z}$. It has

Fourier expansion of the form

$$J(\tau, z) = \sum_{n, \ell \in \mathbb{Z}} a(n, s) e^{2\pi i (n\tau + sz)}$$

$\mathbf{Hilb}^k[\mathbb{C}^2]$

As a set Hilbert scheme of points on \mathbb{C}^2 is the set of ideals in the polynomial ring $\mathbb{C}[x_1, x_2]$ such that the as a quotient space $\mathbb{C}[x_1, x_2]/I$ is isomorphic to a k-dimensional vector space over \mathbb{C} i.e.,

$$Hilb^{k}[\mathbb{C}^{2}] = \{I \subset \mathbb{C}[x_{1}, x_{2}] \mid dim(\mathbb{C}[x_{1}, x_{2}]/I) = k\}.$$

Example: The ideal $I = \langle x_1^k, x_2 \rangle$ is an ideal of colength k in $\mathbb{C}[x_1, x_2]$

The action of torus \mathbb{T}^2 on \mathbb{C}^2 induces an action on ideals in $\mathbb{C}[x_1, x_2]$ in the following way,

$$(t_1, t_2) \cdot I = \{ (f(t_1^{-1}x_1, t_2^{-1}x_2)) \mid f(x_1, x_2) \in I \}.$$

Since, this action preserves the length of the ideal, therefore, it induces the torus action on $\operatorname{Hilb}^k[\mathbb{C}^2]$. The fixed points of the torus action on $\operatorname{Hilb}^k[\mathbb{C}^2]$ are the monomial ideals. According to Ellingsrud and Strømme there is a one to one correspondence between the fixed points monomial ideals of length k in $\mathbb{C}[x_1, x_2]$ and the partitions ν of k.

$$\nu \to I_{\nu} = \{ x_1^r x_2^s \mid (r, s) \notin \nu \}$$
$$I \to \nu(I) = \{ (r, s) \mid x_1^r x_2^s \notin I \}$$

The basis set of vector space $\mathbb{C}[x_1, x_2]/I$ is the set $B_{\nu} = \{x_1^r x_2^s \mid (r, s) \in \nu\}.$

The tangent space at fixed point I of \mathbb{T}^2 action and corresponding to the Young diagram Y is $T_I(\text{Hilb}^k[\mathbb{C}^2]) = \sum_{\nu \in Y} (t_1^{\ell(\nu)+1} t_2^{-a(\nu)} + t_1^{-\ell(\nu)} t_2^{a(\nu)+1}).$

Here, $a(\nu)$ is the arm length and $\ell(\nu)$ is the leg length of the partition.

ELLIPTIC GENUS

Let M be a compact complex manifold dimension d. Consider the formal power series in $q=e^{2\pi i\tau},y=e^{2\pi iz}$ whose coefficients are vector bundles

$$E_{q,y} = y^{-d/2} \bigotimes_{n=1}^{\infty} \left(\wedge_{-y^{-1}q^{n-1}} E^* \otimes \wedge_{-yq^n} E \right)$$

$$\otimes S_{q^n} T_M^* \otimes S_{q^n} T_M$$

where E^* is dual to the vector bundle E and T_M^* is dual to the tangent bundle T_M .

$$\wedge_y E = \sum_{k \geq 0} (\wedge^k E) y^k$$
 and $S_y E = \sum_{k \geq 0} (S^k E) y^k$,

where \wedge^k and S^k are the k-th exterior product and symmetric product respectively. The elliptic genus is defined as

$$\chi_{\text{ell}}(M) = y^{-d/2} \int_{M} ch(E_{q,y}) Td(T_{M})$$

When $\dim M = \dim E = d$, then in term of chern roots it simplifies to the following integral

$$\chi_{\text{ell}}(M) = y^{-d/2} \int_{M} \prod_{i=1}^{d} x_{i} \frac{\theta_{1}(\tau, z + \frac{x_{i}}{2\pi i})}{\theta_{1}(\tau, \frac{x_{i}}{2\pi i})}$$

In case, M is non-compact manifold and admits a torus action with r fixed points, then we can integrate the integral using equivariant localization

$$\chi_{\text{ell}}(M) = y^{-d/2} \sum_{j=1}^{r} \prod_{i=1}^{d} \frac{\theta_1(\tau, z + \frac{x_{i,j}}{2\pi i})}{\theta_1(\tau, \frac{x_{i,j}}{2\pi i})}$$

Here, $\theta_1(\tau, m)$ is an odd Jacobi form

$$\theta_1(\tau, z) = -iq^{\frac{1}{8}}y^{\frac{1}{2}}\prod_{n=1}^{\infty} (1 - q^n)(1 - q^n y)(1 - q^{n-1}y^{-1})$$

RECURSIVE STRUCTURE

Consider the generating function using the elliptic genus of $\mathrm{Hilb}^k[\mathbb{C}^2]$

$$Z(\tau, t, z, \epsilon_{1,2}) = \sum_{k \ge 0} Q^k \chi_{ell}(\operatorname{Hilb}^k[\mathbb{C}^2]),$$

where $Q = e^{-t}$. This generating function is basically the Nekrasove Partition function, the free energy associated to this partition function is

$$F(\tau, t, z, \epsilon_{1,2}) = \log(Z(\tau, t, z, \epsilon_{1,2}))$$

The free energy has the summation of the following form

$$F(\tau, t, z, \epsilon_{1,2}) = \sum_{k>0} Q^k G^{(k)}(\tau, m, \epsilon_{1,2})$$

where $G^{(k)}$ is a Jacobi form. The coefficient of Q, $G^{(1)}$ has the following expression

$$G^{(1)}(\tau, z, \epsilon_{1,2}) = \frac{\theta_1(\tau, z + \epsilon_-)\theta_1(\tau, z - \epsilon_-)}{\theta_1(\tau, \epsilon_+ + \epsilon_-)\theta_1(\tau, \epsilon_+ - \epsilon_-)}.$$

Here, $\epsilon_+ = \frac{\epsilon_1 + \epsilon_2}{2}$ and $\epsilon_- = \frac{\epsilon_1 - \epsilon_2}{2}$. It was shown by [1] that all $G^{(k)}$ can be written in term of Hecke of $G^{(1)}$

$$F(\tau, t, z, \epsilon_{1,2}) = \sum_{k>0} Q^k H_k(G^{(1)}(\tau, z, \epsilon_{1,2}))$$

where H_k is the linear operator which preserves the weight of the Jocbi form and is defined as

$$(H_k J)(\tau, z) = k^{w-1} \sum_{\substack{ad=k \ a \ge 0}} \sum_{0 \le b < d} \frac{1}{d^w} J\left(\frac{a\tau + b}{d}, az\right)$$

REFERENCES

- [1] E. P. Verlinde R. Dijkgraaf, G. W. Moore and H. L. Verlinde. Elliptic genera of symmetric products and second quantized strings. *Commun. Math. Phys.* **185**, 197, 1997.
- [2] M. Eichler and D. Zagier. *The Theory of Jacobi Forms*. Birkhäuser, 1985.
- [3] H. Nakajima. Lectures on Hilbert Schemes of Points on Surfaces. Univ. Lect. Ser. 18, AMS, 1999.

CONTACT INFORMATION

Email ambreen.ahmedgcu@yahoo.com

Abdus Salam School of Mathematical Sciences Government College University, Lahore, PAKISTAN