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Curves and surfaces

To introduce this talk, let us ask the question: which varieties can
be described in terms of curves?

That is, given V an irreducible algebraic variety over k = k, are
there curves Ci, Gy, ..., C, and a dominant rational map
[, G --»V?

Taking n = dim V and all C; equal does not change the answer.

A more arithmetical version of the question: for which V can we
describe all local zeta functions of V' mod p uniformly in terms of
those of curves?

This does not sound like a question that will ever be answered, so
let's restrict to dim V = 2.



Which surfaces to look at?

This is a birationally invariant property of V/, so we may as well
assume that V' is minimal.

Serre showed that the answer is no in general (surfaces contained
in abelian varieties).

If V is a ruled surface, then the answer is obviously yes, since
V ~ C x PL

Let's look at surfaces of Kodaira dimension 0.



Kodaira dimension 0

1. If V is an abelian surface, then V is isogenous to Jac C for
some curve C of genus 2, so V is dominated by C x C.

2. If V is bielliptic, then certainly V is dominated by a product
of curves.

3. If V is an Enriques surface, we should probably start by
looking at the K3 surface that covers it.

4. If V is a K3 surface, then things are unclear.

I will talk about case 4 today.



Reminders on K3 surfaces

A K3 surface is a smooth surface S with trivial canonical divisor
and fundamental group.

Standard examples:

1. A double cover of P? branched along a smooth sextic;
2. a smooth quartic in P3;

3. a smooth intersection of a quadric and a cubic in P4;
4

. a smooth complete intersection of three quadrics in P°.

There is a family of K3 surfaces of degree 2d — 2 in P? for all
d>2.

One can allow certain mild singularities as well.



Covering K3 surfaces by curves

Some K3 surfaces are easily seen to be covered by curves.

For example, let A be an abelian surface. The Kummer surface
A/ £+ 1is a K3 surface, and it is dominated by C x C, where
C x C also dominates A.

However, most K3 surfaces are not Kummer surfaces.

In a paper from 1988, Paranjape gave an interesting construction,
building on work of Schoen.

| will not describe it in detail, but he shows that a double cover of
P2 branched along six lines is covered by the square of a curve of
genus 5.



This talk

Our main goal in this talk is to describe the geometry of a
construction inspired by Paranjape's.

This will give us a new family of K3 surfaces that are covered by
the square of a curve.

We analyze the map of moduli spaces in our situation, showing
that it is a birational equivalence. The same methods would
probably apply in Paranjape’s situation.
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Construction

Let E be an elliptic curve with points pg, ..., p3. Let E3 be an
unramified cover of degree 3, and let D3 be a double cover
branched on the p;.

Let C3 = D3 xg E3. Then G = Z/2Z x 7. /37 acts on C3, and
G1Ss acts on (3 x Gs.

Let W = (G x G3)/{(,7~1),0), where o switches the factors.



A quotient of W

The map (3 x C3 — Ej3 factors through W, which makes W an
elliptic surface with 18 fibres of type b.

It turns out that W has an involution A that acts as negation on
the base and fixes one fibre pointwise. Let K = W/A: then K is
an elliptic surface with nine /> and one /j fibre and so Euler
characteristic 24.

K is a K3 surface.



The Picard lattice of K

The surface K has many other fibrations. One rather nice one has
reducible fibre types I, I5, I3, 3 and trivial Mordell-Weil group.
The next two slides illustrate the relation between this fibration
and the one already described.

The transcendental lattice H?(K)/ Pic K is isomorphic over Q to
V ~ A2Q(+/—3)2. This is connected with the exceptional isogeny

SU(U+ U,Q(v=3)) = SO(Ua U ® (—2) @ (—6)).

This is also related to work of Garbagnati and Sarti: our K3s are
related to K3s in P* with 15 ordinary double points.



Going from D4 and nine Al to A2 and three D4



Going from A2 and three D4 to D4, nine Al, full
2-torsion, and a section of infinite order
(zero section and zero components of Al's not shown)
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The first step back

K comes with an elliptic fibration. Also, the /; fibres come in three
sets of three.

So, given K, we have a point on P! (the location of the /§) and
three sets of three points on P1. This gives us a point on a
quotient of My 10, the moduli space of stable curves of genus 0
with 10 marked points.

There must be relations here. In fact the image consists of curves
with a map of degree 3 to P! such that the first point is in a
ramified fibre and the three sets of three are all fibres. Let the
images of these points be Py, Q1, @2, Q3.



The second step back (1)

This sounds like we just have four points on the image P!, but in
fact we have three more: the images of the other points of
ramification. Let these be Py, P», Ps.

We can use these data to recover an elliptic curve and four points

on it. Indeed, let E be the double cover of P! branched at the P;,

and let +B; be the inverse images of the Q;. Take the point above
Py as the origin.

There are four points Ry, ..., R3 on E such that

{Ri — Rj i #j} ={xBxx By : k # (}, and these are unique up
to translation and negation. The divisor > (R;) —2(0) —2(>_ B))
is principal.



The second step back (2)

We have a triple cover of P! whose branch points we have taken as
the branch points of a double cover.

This is exactly like what happens when we start with a 3-isogeny of
elliptic curves E/ — E and pass to the quotients by 4-1: we obtain
amap E/'/+1— E/ £ 1, which is a map of degree 3 ramified at
the points under the 2-torsion points of E.

So we can pull back to E and obtain an unramified cover E3 — E
of degree 3.

(There are 4 triple covers of P! with four given points of
ramification. The choice turns out to be essentially the same as
that involved in choosing the double cover D3 — £.)



Three moduli spaces

So we have three moduli spaces: one of curves of genus 1 with
additional data, one of K3 surfaces with a chosen fibration, and
one of curves of genus 0 with some marked points. There is a map
from each of these to the next. They are all irreducible of
dimension 4.

With some careful analysis one can show that the composition of
the three maps is the identity, and conclude that all of them are
birational equivalences. (This question is not considered by
Paranjape, but it seems likely that a similar procedure would
apply.)

In other words, a typical K3 surface of this type comes from a
unique curve of genus 7 of the correct type.
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Counting points

Most concretely, we have shown that the ¢-adic Galois
representations for K are quotients of those for C3 x C3. In other
words, if we have a description of the local zeta function of C3 at p
we can use it to determine that of K. (Though perhaps still
complicated, since there are other quotients that need to be
subtracted off.)



Kuga-Satake-Deligne and Hodge

This result gives a concrete illustration of some deep conjectures
and constructions. In particular, the Hodge conjecture is unknown
in general for abelian fourfolds of Weil type (though in our case it
was known by work of Schoen). Our results make it explicit in the
special case of an endomorphism ring Z[(3]. We have also clarified
the relation between K and its Kuga-Satake abelian variety in this
setting.



A compelling question

Laterveer, noting that all K3 double covers of P2 with 15 nodes are
covered by curves, asked whether the same is true for all K3
surfaces with 15 nodes.

The problem can now be solved for degree 6.

We have another construction that should give the result for
degree 4. It is more difficult, essentially because Q(1/—2) is not a
cyclotomic field whereas Q(v/—1) and Q(y/—3) are. But the basic
idea is similar: we take an unramified cyclic cover of degree 8 of a
curve of genus 3 and pass to a suitable quotient of its square.

Are there constructions analogous to these that would give the
same result in other cases?
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Thank you

Thank you for your attention.

For more details please see
https://arxiv.org/abs/2009.07807.

Are there any questions?


https://arxiv.org/abs/2009.07807
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