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Reminders on continued fractions

A continued fraction is an expression of the form
a1 + 1/(a2 + 1/(. . . )) for ai in a fixed integral domain R.

If the continued fraction is finite, it defines an element of the
fraction field of R.

Every element of Q+ has a finite continued fraction with a1 ∈ N
and ai ∈ Z+ for i > 1, which is unique if we assume that the last
ai is not 1.

Every α ∈ R with [Q(α) : Q] = 2 has a unique continued fraction
with a1 ∈ Z and ai ∈ Z+ for i > 1 which is eventually periodic:
i.e., an+c = an for sufficiently large n.



Square roots

We write [a1, . . . , ak , ak+1, . . . , an] for the continued fraction for
the sequence a1, . . . , ak , ak+1, . . . , an, ak+1, . . . .

For R a general ring, there is no analogue of N ⊂ Z and no
canonical concept of convergence in the fraction field.

A periodic continued fraction over R defines a quadratic with
coefficients in R by writing

x = [ak+1, . . . , an] = [ak+1, . . . , an, ak+1, . . . , an]

and rearranging to get x = a + b/x .

In this talk we are interested in continued fractions for
√

t: in
other words, continued fractions whose quadratic is x2 − t.



Example

Consider the continued fraction [1, 2]. Let this be α: we then have
1 + 1/(α + 1) = α. Multiplying through by α + 1 we obtain
α+ 2 = α2 + α or α2 − 2 = 0. This is the usual continued fraction
for
√

2. However, if we permit the ai to be negative, other
eventually periodic continued fractions exist. For example,
[3,−1, 2, 3] also defines the polynomial x2 − 2.

Can we classify all eventually periodic continued fractions of a
given length (with coefficients in Z or some other ring) that define
this polynomial?



Varieties

Fix k , n ∈ Z and t ∈ R and consider continued fractions
C : [a1, . . . , ak , ak+1, . . . , an].

The coefficients of the quadratic polynomial defined by C are
polynomials in the ai .

Thus the condition for C to correspond to x2 − t defines a
subvariety of codimension 2 in An(R). We write Sk,n−k,t for this
variety.

We ask the question: are the R-points of Sk,n−k,t Zariski dense? If
not, do they become so over a finite integral extension of R, or
after inverting finitely many elements of R?
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Curves

The following result is quite famous:

Theorem
(Faltings) Let C be a curve over a number field K . Then the
rational points of C are Zariski-dense over some finite extension of
K (we say “potentially dense”) if and only if gC ≤ 1.

A result on integral points is also well-known:

Theorem
(Siegel) Let C be an affine curve over a number field K . Then the
integral points on C are potentially dense if and only if gC = 0 and
C has at most 2 points at infinity.



Higher dimensions

The question of potential density of rational points is complicated.
The canonical divisor is expected to have a strong influence.

Conjecture

1. (Lang) Let V be a variety such that, for some n > 0, the map
defined by the linear system |nKV | is a birational equivalence.
Then rational points on V are not Zariski dense.

2. Let V be a variety such that |−nKV | defines a birational
equivalence for some n > 0. Then rational points on V are
potentially dense.

3. Let V be a Calabi-Yau variety. Then rational points on V are
potentially dense.

Intermediate situations are not well-understood, though ideas of
Campana offer hope.



Logarithmic geometry

On a proper variety, integral and rational points are the same.

In general there is the following idea:

Principle

(Iitaka) Let P(V ) be a property of varieties that is governed by the
canonical divisor for V proper. Then P(V ) is governed by the log
canonical divisor in general.

(Given non-proper V , let V̄ be a proper variety such that
D = V̄ \ V is a union of reduced divisors such that all singularities
look locally like x1x2 . . . xi = 0. Then the log canonical divisor of
V is defined to be KV̄ + D. V̄ is not unique; part of the principle
is that the choice does not matter.)



Examples

Potential density is such a property. For curves, the conjectures are
theorems of Siegel and Faltings.

In higher dimensions, much less is known, but there are results in
both directions. For example, integral points are not dense on
semiabelian varieties of log general type. Also, etale covers
preserve both potential density and these conjectures.
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Plan for the next few minutes

We now return to the varieties Sk,n−k,t that parametrize continued
fractions for

√
t with preperiodic part of length k and period of

length n − k. We will be most interested in the cases n = 4, in
which dim S = 2.

We start by discussing S0,4,t . It turns out that S1,3,t is strikingly
similar to S0,4,t , and more generally that S1,n−1,t is very much like
S0,n,t . We do not understand this.

We will determine a suitable compactification and study the log
canonical divisor.



Compactifying S0,4,t

Since S0,4,t ⊂ A4, the first thing to do is to look at its Zariski
closure P0,4,t ⊂ P4. Let p1, . . . , p5 be the coordinates on P4.

The divisor at infinity (i.e., p5 = 0) consists of 4 double lines,
along each of which P0,4,t is singular.

Let C0,4,t be the normalization in P6. It is a surface with 5
ordinary double points. Letting q1, . . . , q7 be the coordinates on
P6, the divisor at infinity is defined by q7 = 0 (because q7 is the
only coordinate that involves p5).



The snc compactification

The divisor q7 = 0 on C0,4,t has 6 components, any 2 meeting
transversely and no 3 intersecting.

Also, 4 of the singular points have q7 = 0. Their strict transforms
should also be considered as boundary divisors.

Let C̃0,4,t be the minimal desingularization of C0,4,t . Then the
divisor q7 = 0 on C̃0,4,t is a simple normal crossings divisor (i.e.,
the singularities are locally of the form x1x2 = 0).



The simple model

Definition
Let S be a smooth surface and D an snc divisor on S . Suppose
that S has no smooth rational curve E with E 2 = −1 and E
contained in or disjoint from D. Then (S ,D) is simple.

We may always blow down curves on (S ,D) to obtain a simple
model. This does not affect potential density of integral points.

(Blowing down a general −1-curve E might. A point that misses
the boundary but meets E mod p meets the boundary mod p after
E is contracted.)

The simple model of C̃0,4,t is a blowup of P1 × P1 in a point and
an infinitely near point.



The log Iitaka fibration

For a proper variety V , the Iitaka fibration is the map V → Pk

given by |nKV | for sufficiently large and divisible n. (The
dimension of its image is the Kodaira dimension.)

More generally, for a pair (V̄ ,D), the log Iitaka fibration is the
map V̄ → Pk given by |n(KV̄ + D)| for sufficiently large and
divisible n. It is the analogue of the Iitaka fibration for V̄ .

Proposition

The log Iitaka fibration of the simple model of C̃0,4,t is a map to a
conic whose general fibre is a conic.

(This means that the base and general fibre both have two points
at infinity.)



A density result

We can use the log Iitaka fibration to prove that integral points on
C̃0,4,t are potentially dense but not dense. Note that C̃0,4,t is
analogous to an elliptic surface over an elliptic curve. Some but
not all such surfaces have potentially dense rational points.

Proposition

The integral points on C̃0,4,t are potentially dense.

Proof.
(very brief sketch, after Levin-Yasufuku) A fibre in either direction
is a conic. Extend to a nonreal field where integral points on one
fibre are Zariski dense; then consider the fibres through these
points in the other direction.



Longer sketch of proof

Proof.
(sketch, following a paper of Levin-Yasufuku) There is a fibre of π1

on C̃0,4,t that is a smooth rational curve meeting the boundary in 2
points and whose integral points are therefore potentially dense.
Extend the ring so that they are dense and consider an integral
point P on it: the fibre of π2 through P is a smooth rational curve
meeting the boundary in 2 points. It has an integral point, so it
has infinitely many integral points over a field that is not totally
real. Thus after a finite extension we have infinitely many curves
on C̃0,4,t with infinitely many integral points.



A non-density result

Proposition

The integral points on C̃0,4,t are not dense over Z.

Proof.
(Proof 1) A classical result on continued fractions is that, for fixed
k , n, there is at most one expression of α ∈ R by a continued
fraction with all ai /∈ {−2,−1, 0, 1, 2}. The result follows
immediately (and indeed for all the Sk,n−k,t).

This proof can be generalized to the ring of integers in an
imaginary quadratic field. However, I find it slightly unsatisfactory.

The result can also be proved directly by elementary number
theory, in a way that makes it easy to determine the integral points.



A second proof (short version)

Proof.
(Proof 2, sketch) The fibres of the log Iitaka fibration are conics
which can be written down explicitly.
Only fibres above units of norm 1 in K (

√
t) can have integral

points. As a
√

t + b runs over such units, b/a approaches
√

t.
There are two types of points, one of which leads to b/a being
close to an integer and close to

√
t, and one that leads to a/m

approaching an irrational and (a + 1)/m being an integer, where m
is the third coordinate.
Both of these can only hold finitely often.

The first half of this works over number fields; the second half
doesn’t.



A second proof (long version)

Proof.
(Proof 2, sketch) We compose the map S0,4,t → C̃0,4,t with the log
Iitaka fibration, obtaining a map φt whose fibre at (x : 1) is a
conic. In fact x must be a unit of norm 1 in K (

√
t) (the boundary

of the base of the fibration is {0,∞}). If x = a
√

t + b, then the
fibre at x is defined by

ap3p4− bp3p5 + (a + 1)p2
5 = ap1− p3− btp5 = p2− ap4 + bp5 = 0.

Put p5 = 1 and assume that the pi ∈ Z: then p3|(a + 1) from the
first equation. If p3 = a + 1 then a|(bt + 1) from the second
equation; but b/a→

√
t, so this happens on finitely many fibres.

Similarly if p3 = (a + 1)/d for d = −1, 2,−2.
Otherwise let

√
t = s + f with s ∈ Z and |f | < 1/2. Then one

shows that p3 → af and a/p3 → 1/f ; but (a + 1)/p3 ∈ Z and f is
irrational, so p3 is bounded for fixed t.



Remarks

1. For fixed t ∈ N \ N2, it is easy to make the estimates in the
proof explicit and list all purely periodic continued fractions of
length 4 for

√
t.

2. The part of the argument that shows that integral points lie
over units of relative norm 1 is valid over an arbitrary number
field. However, when the units are not discrete in the real
topology, it is not clear how to use this to draw conclusions
about potential density: in particular, we do not know whether
the integral points of S0,4,t are dense over totally real fields.
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Summary of this section

The integral points on S2,2,t and S3,1,t are not potentially dense
(proof: they map to P1 − 3 points).

The Iitaka fibration on S0,4,t can be interpreted in terms of the Pell
equation, and that seems to generalize to S0,n,t and S1,n−1,t .

For n = 5 this can be used to prove non-density.

We conjecture that the same works for all n > 4 and that this
fibration can also be used to prove potential density.



Other surfaces

As already noted, the behaviour of integral points on S1,3,t is very
much like that on S0,4,t , and the proofs are quite similar. For S2,2,t

and S3,1,t , the situation is quite different:

Proposition

The integral points on S2,2,t and S3,1,t are not potentially dense.

Proof.
Consider the maps to P1 given by (a1 : 1) and (a4 : 1) respectively.
In both cases the image misses 3 points and so has only finitely
many integral points over any finitely generated subring of a
number field. Thus the integral points of the surfaces are
contained in a finite union of fibres.



The “Pell equation”

The convergent of the continued fraction for
√

t just before the
beginning of the periodic part gives the fundamental solution of
the so-called Pell equation y 2 − tx2 = 1.

It turns out that the Iitaka fibration on S0,4,t essentially coincides
with the map (N : D : 1) where
N = a1a2a3 + a1 + a3,D = a2a3 + 1 are the numerator and
denominator of this convergent. Similarly for S1,3,t .

In general it is not easy to construct an snc compactification of
Sk,n−k,t . However, for k = 0, 1, the image of the analogous map to
P2 defined by (N : D : 1) is a conic.



The log Iitaka fibration in dimension 3 . . .

For k = 0, 1 and n = 5, the fibres of these maps to conics are del
Pezzo surfaces of degree 5.

Note that, as in the surface case, the fibre is a “log Calabi-Yau
variety”, that is, the class of a hyperplane section is −K .

These maps can be used to prove that integral points are not
Zariski dense by writing the threefolds as conic bundles over a
suitable surface. We expect that the argument that proves
potential density on the surfaces could be adapted to this situation,
and it is possible that the argument could be extended to n > 5.

We conjecture:

Conjecture

These maps to conics are the log Iitaka fibrations for S0,5,t and
S1,4,t .



. . . and higher dimensions?

Somewhat similarly, for S0,6,t the general fibre is a singular
intersection of three quadrics in P6. It appears to have canonical
singularities, so again we seem to have K = −H and the fibre is a
log Calabi-Yau (and has some interesting fibrations of its own).

Beyond dimension 4 the singularities at the boundary nest and
interact in complicated ways and it would be very difficult to
construct an snc compactification explicitly. Nevertheless we
conjecture:

Conjecture

The maps to conics as above are the log Iitaka fibrations for S0,n,t

and S1,n−1,t for all n > 1. They can be used to prove that integral
points are potentially dense but not dense on these varieties.
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Thank you

Thank you for your attention.
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