A Classification of Rational Isogeny-Torsion Graphs

Garen Chiloyan

UConn

October 5th, 2019

Garen Chiloyan (UConn)

Isogeny-Torsion Graphs

October 5th, 2019 1 / 30

Elliptic Curves

Definition

A rational elliptic curve, E/\mathbb{Q} , is a smooth projective curve of the form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

for some $a_1, a_2, a_3, a_4, a_6 \in \mathbb{Q}$ with a point at infinity defined over \mathbb{Q} , $\mathcal{O} = [0:1:0]$.

Elliptic Curves

Definition

A rational elliptic curve, E/\mathbb{Q} , is a smooth projective curve of the form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

for some $a_1, a_2, a_3, a_4, a_6 \in \mathbb{Q}$ with a point at infinity defined over \mathbb{Q} , $\mathcal{O} = [0:1:0]$.

Theorem (Mordell–Weil, 1922)

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})$ is a finitely generated abelian group, i.e., $E(\mathbb{Q})_{tors}$ is finite abelian and $E(\mathbb{Q}) \cong \mathbb{Z}^{R_{E/\mathbb{Q}}} \times E(\mathbb{Q})_{tors}$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Elliptic Curves

Definition

A rational elliptic curve, E/\mathbb{Q} , is a smooth projective curve of the form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

for some $a_1, a_2, a_3, a_4, a_6 \in \mathbb{Q}$ with a point at infinity defined over \mathbb{Q} , $\mathcal{O} = [0:1:0]$.

Theorem (Mordell–Weil, 1922)

Let E/\mathbb{Q} be an elliptic curve. Then $E(\mathbb{Q})$ is a finitely generated abelian group, i.e., $E(\mathbb{Q})_{tors}$ is finite abelian and $E(\mathbb{Q}) \cong \mathbb{Z}^{R_{E/\mathbb{Q}}} \times E(\mathbb{Q})_{tors}$.

Theorem (Mazur, 1978)

 $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups

 $\mathbb{Z}/M\mathbb{Z}$ with $1 \leq M \leq 10$ or M = 12

 $\mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2N\mathbb{Z}$ with $1 \le N \le 4$

Definition

Let E/\mathbb{Q} and E'/\mathbb{Q} be elliptic curves. An **isogeny** mapping E to E' is a morphism $\phi: E \to E'$ such that $\phi(\mathcal{O}_E) = \mathcal{O}_{E'}$. E and E' are said to be **isogenous** if there exists a nonconstant isogeny from E to E'. The set of all elliptic curves isogenous to E is called the **isogeny class of** E.

Definition

Let E/\mathbb{Q} be a rational elliptic curve. The **isogeny graph** of E is a visualization of the isogeny class of E with edges being rational isogenies generated by the finite cyclic \mathbb{Q} -rational subgroups of E and vertices being pairwise non-isomorphic rational elliptic curves isogenous to E that are generated by the finite cyclic \mathbb{Q} -rational subgroups of E.

Let E/\mathbb{Q} : $y^2 + xy + y = x^3 - x^2 - 6x - 4$ with LMFDB label 17.a2. Then the following is the rational isogeny graph of E:

<ロト <四ト <注入 <注下 <注下 <

Motivating Examples: Isogeny-Torsion Graphs

Mazur's theorem establishes the possibilities for $E(\mathbb{Q})_{tors}$. **Question**: What are the possibilities for torsion at every vertex of isogeny graph?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivating Examples: Isogeny-Torsion Graphs

Mazur's theorem establishes the possibilities for $E(\mathbb{Q})_{tors}$. **Question**: What are the possibilities for torsion at every vertex of isogeny graph?

Let E/\mathbb{Q} : $y^2 + xy + y = x^3 - x^2 - 6x - 4$. Then the following are the rational isogeny graph and the rational isogeny-torsion graph of E:

More Examples of Isogeny-Torsion Graphs

An Opening Question

Is there an example of the following rational isogeny-torsion graph?

An Opening Question

Is there an example of the following rational isogeny-torsion graph?

Answer: No!

Can we classify ALL rational isogeny-torsion graphs?

In other words, can we classify the size and shape of a rational isogeny graph *and* the torsion groups of its vertices?

Can we classify ALL rational isogeny-torsion graphs?

In other words, can we classify the size and shape of a rational isogeny graph *and* the torsion groups of its vertices?

Theorem (C., Lozano-Robledo)

There are at least 37 and at most 39 possible rational isogeny-torsion graphs.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem (B. Mazur, 1978)

Let E/\mathbb{Q} be an elliptic curve. A prime degree \mathbb{Q} -rational isogeny of E has degree 2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, or 163.

Theorem (M. Kenku, 1982)

Let E/\mathbb{Q} be an elliptic curve. Then there are at most 8 pairwise non-isomorphic rational elliptic curves that are isogenous to E.

Note: There is no analogy to Mazur's or Kenku's theorems for higher degree number fields. \mathbb{Q} is the only number field over which we can classify isogeny-torsion graphs.

Mazur's and Kenku's theorems give us a classification of the sizes and shapes of all rational isogeny graphs. They are one of the following:

L_k Graphs

Linear graphs with k = 1, 2, 3, or 4 vertices.

 $\{\mathcal{O}\}$ Isogeny Class 37.a

Isogeny Class 121.a

Isogeny Class 11.a

Isogeny Class 432.e

R_k Graphs

 R_k : **Rectangular** graphs with k = 4 or 6 vertices.

T_4 graphs

 T_4 : Graphs with a single elliptic curve with full two-torsion

T_6 graphs

 \mathcal{T}_6 : Graphs with two rational elliptic curves with full two-torsion and no 3-isogenies

(日) (四) (王) (王) (王)

12

T_8 graphs

 T_8 : Graphs with three rational elliptic curves with full two-torsion

S Graphs

 $\mathsf{S}:$ Graphs with two rational elliptic curves with full two-torsion and a 3-isogeny

(日) (四) (王) (王) (王)

12

Classification of all L_k Graphs

For the following, we abbreviate $\mathbb{Z}/a\mathbb{Z} = [a]$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z} = [2, b]$

Graph Type	Isomorphism Types	LMFDB Label
L_1	([1])	37.a
L_2	([1], [1])	75.c
	([2], [2])	46.a
	([3], [1])	44.a
	([5], [1])	38.b
	([7], [1])	26.b
L_3	([1], [1], [1])	99.d
	([3], [3], [1])	19.a
	([5], [5], [1])	11.a
	([9], [3], [1])	54.b
L_4	([1], [1], [1], [1])	432.e
	([3],[3],[3],[1])	27.a
	$\frac{([1],[1],[1],[1])}{([3],[3],[3],[1])}$	27.a

TABLE 2. The list of all L_k rational-isogeny graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Graph Type	Isomorphism Types	LMFDB Label	
R_4	([1], [1], [1], [1])	400.f	
	([2], [2], [2], [2])	49.a	
	([3],[3],[1],[1])	50.a	
	([5], [5], [1], [1])	$50.\mathrm{b}$	
	([6], [6], [2], [2])	20.a	
	([10], [10], [2], [2])	66.c	
R_6	([2], [2], [2], [2], [2], [2])	98.a	
	([6], [6], [6], [6], [2], [2])	14.a	
TABLE 4. The list of all \overline{R}_k rational-isogeny graphs			

Classification of all T_k Graphs

Graph Type	Isomorphism Types	LMFDB Label	
T_4	([2,2], [2], [2], [2])	120.a	
	([2,2], [2], [4], [2])	33.a	
	([2,2], [2], [4], [4])	17.a	
T_6	([2,4],[4],[4],[2,2],[2],[2])	24.a	
	([2,4],[8],[4],[2,2],[2],[2])	21.a	
	([2,2],[2],[2],[2,2],[2],[2])	126.a	
	([2,2],[4],[2],[2,2],[2],[2])	63.a	
T_8	([2,8],[8],[8],[2,4],[4],[2,2],[2],[2])	210.e	
	([2,4],[4],[4],[2,4],[4],[2,2],[2],[2])	195.a	
	([2,4],[4],[4],[2,4],[8],[2,2],[2],[2])	15.a	
	([2,4],[8],[4],[2,4],[4],[2,2],[2],[2])	1230.f	
	([2,2],[2],[2],[2,2],[2],[2],[2],[2])	45.a	
	([2,2],[4],[2],[2,2],[2],[2,2],[2],[2])	$75.\mathrm{b}$	
TABLE 2 The list of all $T_{\rm c}$ rational isographs			

TABLE 3. The list of all T_k rational-isogeny graphs

TABLE 5. The list of all (possible) S rational-isogeny graphs

Examples of 21-isogenies

Let E/\mathbb{Q} be an elliptic curve with a finite cyclic \mathbb{Q} -rational group of order 21. Then there exist examples of the following rational isogeny-torsion graphs:

Isogeny Class 1296.f

Non-examples of 21-isogenies

The following rational isogeny-torsion graphs do not occur.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The following two examples of rational isogeny-torsion graphs with 27-isogenies exist.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\mathbb{Z}/3\mathbb{Z} \longrightarrow \mathbb{Z}/3\mathbb{Z} \longrightarrow \mathbb{Z}/3\mathbb{Z} \longrightarrow \mathcal{O}$$
LMFDB Label 27.a

$$\mathcal{O} \longrightarrow \mathcal{O} \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}$$

LMFDB Label 432.e

The following two examples of rational isogeny-torsion graphs with 27-isogenies exist.

$$\mathbb{Z}/3\mathbb{Z} \longrightarrow \mathbb{Z}/3\mathbb{Z} \longrightarrow \mathbb{Z}/3\mathbb{Z} \longrightarrow \mathcal{O}$$
LMFDB Label 27.a

$$\mathcal{O} \longrightarrow \mathcal{O} \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}$$

LMFDB Label 432.e

The following rational isogeny-torsion graph does not occur.

$$\mathbb{Z}/9\mathbb{Z} \longrightarrow \mathbb{Z}/9\mathbb{Z} \longrightarrow \mathbb{Z}/3\mathbb{Z} \longrightarrow \mathcal{O}$$

Reasoning: All rational 27-isogenies are CM corresponding to one *j*-invariant and no twists of this curve produce this graph.

An Example: Classification of T_4 Graphs (1)

Let E/\mathbb{Q} be an elliptic curve. Suppose E has 4 curves in its isogeny class and

$$E(\mathbb{Q})_{tors} = E[2] = \langle P, Q \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

What are the possible isogeny-torsion graphs of E?

- Finite cyclic Q-rational subgroups of E are $\{O\}, \langle P \rangle, \langle Q \rangle$ and $\langle P + Q \rangle$.
- $(E/\langle P \rangle)(\mathbb{Q})_{\text{tors}}, (E/\langle Q \rangle)(\mathbb{Q})_{\text{tors}}$, and $(E/\langle P + Q \rangle)(\mathbb{Q})_{\text{tors}}$ are cyclic.
- E has a point of order 2 defined over Q, thus all isogenous curves do too, but because C(E) = 4, no curve can have a point of order 8 defined over Q. No points of odd order defined over Q.

Let's assume the following isogeny-torsion graph exists.

Classification of T_4 Graphs (3)

• Assume *E* is non-CM and $(E/\langle P \rangle)(\mathbb{Q})_{\text{tors}}, (E/\langle Q \rangle)(\mathbb{Q})_{\text{tors}}$, and $(E/\langle P+Q \rangle)(\mathbb{Q})_{\text{tors}}$, are cyclic of order 4. Then the image of the mod 4 Galois representation of *E* is conjugate to

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right) \right\} \in \textit{GL}_2(\mathbb{Z}/4\mathbb{Z})$$

but no group in the RZB database of images of 2-adic Galois representations of rational non-CM elliptic curves reduces mod 4 to this group.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Classification of T_4 Graphs (3)

• Assume E is non-CM and $(E/\langle P \rangle)(\mathbb{Q})_{\text{tors}}, (E/\langle Q \rangle)(\mathbb{Q})_{\text{tors}}$, and $(E/\langle P+Q \rangle)(\mathbb{Q})_{\text{tors}}$, are cyclic of order 4. Then the image of the mod 4 Galois representation of E is conjugate to

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right) \right\} \in \textit{GL}_2(\mathbb{Z}/4\mathbb{Z})$$

but no group in the RZB database of images of 2-adic Galois representations of rational non-CM elliptic curves reduces mod 4 to this group.

Suppose E is CM. Then there are only finitely many *j*-invariants that correspond to a torsion subgroup with full two-torsion. No quadratic twist will give you an isogeny-torsion graph with all three (E/⟨P⟩)(ℚ)_{tors}, (E/⟨Q⟩)(ℚ)_{tors}, and (E/⟨P + Q⟩)(ℚ)_{tors}, cyclic of order 4.

Classification of T_4 Graphs (3)

• Assume E is non-CM and $(E/\langle P \rangle)(\mathbb{Q})_{\text{tors}}, (E/\langle Q \rangle)(\mathbb{Q})_{\text{tors}}$, and $(E/\langle P+Q \rangle)(\mathbb{Q})_{\text{tors}}$, are cyclic of order 4. Then the image of the mod 4 Galois representation of E is conjugate to

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right) \right\} \in \textit{GL}_2(\mathbb{Z}/4\mathbb{Z})$$

but no group in the RZB database of images of 2-adic Galois representations of rational non-CM elliptic curves reduces mod 4 to this group.

- Suppose E is CM. Then there are only finitely many *j*-invariants that correspond to a torsion subgroup with full two-torsion. No quadratic twist will give you an isogeny-torsion graph with all three (E/⟨P⟩)(ℚ)_{tors}, (E/⟨Q⟩)(ℚ)_{tors}, and (E/⟨P + Q⟩)(ℚ)_{tors}, cyclic of order 4.
- Isogeny classes with LMFDB labels 120.*a*, 33.*a*, and 17.*a* correspond to T₄ isogeny graphs with zero, one, and two point-wise rational groups of order 4 respectively.

All T_4 Graphs

Graphs Not Yet Ruled Out

Attempts at a Full Solution (1)

• The image of the mod 4 Galois representations of the two unconfirmed graphs are conjugate to

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{cc} 3 & 2 \\ 2 & 1 \end{array}\right), \left(\begin{array}{cc} 3 & 2 \\ 2 & 3 \end{array}\right) \right\} \in \textit{GL}_2(\mathbb{Z}/4\mathbb{Z})$$

- Find the image in RZB database and get its *j*-invariant.
- Add a 3-isogeny to these images by comparing it to *j*-invariant of a curve with a 3-isogeny
- This defines a curve of genus 1, 3, or 7. And we have not been able to find all rational points of those curves as of yet

Questions?

イロト イヨト イヨト イヨト

æ