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New upper bounds for the number of divisors function

Introduction

o Let

T(n) =) "1, w(n):=>1 Qn):=> a
d|n pln

p|(ln

o If the factorization in distinct prime factors is

n=p-pk (pr <o < pi)

then we say that
(a1, .. )

is the exponent vector of n.
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New upper bounds for the number of divisors function

Some easy facts

@ The value of 7(n) depends only on its exponent vector and is
given by
7(n) = (a1 +1) -~ (aw +1).
@ For each € > 0, there is a constant C(¢) such that
7(n) < C(€)n".

In fact, we have

C(e) == maxa+1.

a>0  pe€

p<2t/e
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max (n) = 20+ Gatoe

n<x
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New upper bounds for the number of divisors function

Maximal order

o It is well known since Wigert (1907) that

log x

m<aX T(n) = 2(1+O(1)) log log x |

@ Nicolas and Robin (1983) have shown that

log n
7(n) < 2Mwsiesn  for each n > 3

where 7; := 1.53793986 . .. with equality only for
n = 6983776800.
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Using the arithmetic geometric mean inequality

o We have

k
(1 +1)--(ax+1) < (a1+1+m+ak+1)

k

B (k+a1+...+ak>k
N k
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Using the arithmetic geometric mean inequality

o We have

(o +1)- - (ap+1) <

(a1+1+---+ak+1)k
k

B (k+a1+...+ak>k

k

@ Thus

7(n) < (1+ fg:i)wm (n>2).
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1{n < x: Q(n) > aw(n)}| < x(log log x)(log x)*" "1,
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New upper bounds for the number of divisors function

A consequence

@ One can show that

1{n < x: Q(n) > aw(n)}| < x(log log x)(log x)*" "1,

@ We deduce that for each € > 0 we have
2w(n) < T(n) < (2+ e)w(")

for almost all n < x as x — oc.
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Best possible inequalities 1

For every integer n > 2,

rin) < (ww?il‘;fl(n))w(")’

where

1 log 60060
= = — 1 — | =2 132...
M2 exp(6 0g 96 — log ( 610g 6 )) 090713

and log_ (z) := log(max(2, z)).
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Best possible inequalities 2

For every integer n > 2,

T(n)§(1+773w( log n ))w(n)

n)log, w(n
where ( Y1 _qy7)
1152%/% —1)7 log 7
= = 1.1999953. ..
15 log 367567200
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An inequality for large integers

For every integer n > 782139803452561073520,

i) < (w(n)zlclaoginw(n))wm '

Moreover, the inequality remains true for all n > 2 with w(n) < 3.
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The main result

For every positive integer n with w(n) > 74,

(n) < (1 + W)M.
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New upper bounds for the number of divisors function
Comments on the result 1
@ We introduce the function A(n) defined implicitly by
A(n) | “(n)
7(n) = (1 + _An)logn ) ,
w

(n) logw(n)

when w(n) > 2. Therefore, for each integer n > 2 with
w(n) > 2, we set

(7(n)/“" — 1)w(n) log w(n)
log n '

A(n) ==
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Comments on the result 1
@ We introduce the function A(n) defined implicitly by
A(n) | “An)
7(n) = (1 + _An)logn ) ,
w

(n) logw(n)

when w(n) > 2. Therefore, for each integer n > 2 with
w(n) > 2, we set

(7(n)/“" — 1)w(n) log w(n)
log n '

A(n) ==

log n w(n) )
7(n) < <1+—w(n (n)) < A\n) <1

) log w
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Comments on the result 2

@ The Theorem is best possible since the integer
no=22-3%.5°.7*.11%.13* . 17° . 19*. .. 53% . 59 . . - 367

satisfies w(ng) = 73 and A(ny) = 1.0008832... They are many
other examples but ng is the unique such integer that maximises
the function \.
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New upper bounds for the number of divisors function
Comments on the result 2
@ The Theorem is best possible since the integer

np=24%.3%.5>.7".113.13*.17° . 19?... 532 . 59 . . . 367

satisfies w(ng) = 73 and A(ny) = 1.0008832... They are many
other examples but ng is the unique such integer that maximises
the function \.

@ Using the same methods, we can show that
nm=21.38.5".74.113.13%.17%.19%...53%2.59...373

is the only integer that realises the maximum of A when
restricted to w(n) = 74. We have \(n;) = 0.99991077 ...
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Comments on the result 3

@ There are only finitely many integers n with w(n) > 44 such that
A(n) > 1. In fact, none of these numbers n exceeds exp(10758.21).
One such large n with w(n) = 44 is the one whose exponent vector is

(354,223,152,125,102, 95, 86, 83,77,72,71,67, 65,
64,63,61,59,59,57,57,56, 55, 55,54, 53,52, 52,52,
51,51,50,49,49,49,48, 48,48, 47,47,47,46,46,46,46),

and this number n has 4622 digits and its size is about
exp(10640.84). Moreover, it can be established that any other integer
n with A(n) > 1 and w(n) > 45 is less than exp(4569.68).
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Fondamental inequality

Lemma (Somasundaram (1987))

For every integer n > 2,

() < <—'°g(””(”)))”(") 1
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Key lemma

Let n > 2 be an integer and p a prime number. If p®||n with o > 2,

then
w7 = (- wm) (- en)

Patrick Letendre (joint work with Jean-Marie De Koninck) October 3, 2015 15 / 25



New upper bounds for the number of divisors function
Elementary estimates

Lemma

We have
k
> logp; < k(log k + loglogk —1/2)  for k > 5,
i=1
k
ZloglogPiZk(loglogk—i—|0g|0gk_3/2> fork > 6
— log k
and
k
H < (logk)™ for k > 44,
P |0g pi

Patrick Letendre (joint work with Jean-Marie De Koninck) October 3, 2015 16 / 25



New upper bounds for the number of divisors function

Sketching the proof of the main theorem 1

Patrick Letendre (joint work with Jean-Marie De Koninck) October 3, 2015 17 / 25



New upper bounds for the number of divisors function

Sketching the proof of the main theorem 1

@ For obvious reasons, the largest values of \ are acheived by
integers of the form

k
HP?" with a; > ap > -+ > ay,
i=1

where the p;'s are the primes in ascending order.
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@ Using the fundamental inequality and the elementary estimates,
we rule out the cases with k > 94.
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New upper bounds for the number of divisors function

Sketching the proof of the main theorem 1

@ For obvious reasons, the largest values of \ are acheived by
integers of the form

k
Hpq" with ay > ap > -+ > ay,
i=1

where the p;'s are the primes in ascending order.

@ Using the fundamental inequality and the elementary estimates,
we rule out the cases with k > 94.

@ Also, again with the fundamental inequality, we get an upper
bound for any possible counterexample n with 74 < w(n) < 94.
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@ We specialise the structure of the possible counterexample n to

a1 Ao 2 2
n=pPy Py " Ppt1" " Pj Pa+1 " Pk

@ The upper bound and the structure limit the possible values for
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New upper bounds for the number of divisors function

Sketching the proof of the main theorem 2

@ We specialise the structure of the possible counterexample n to

a1 Ao 2 2
n=pPy Py " Ppt1" " Pj Pa+1 " Pk

@ The upper bound and the structure limit the possible values for
(1,42)-

@ Using the multiplicativity of 7 and the fundamental inequality we
are lead to define the function

(c1(j2, 1, k)(log z + c2(ja, j1, k))2/* — 1)k log k
log z '

ﬂ(j27.j17 k7 Z) =
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Sketching the proof of the main theorem 3

@ This function has the property

A(n) S ﬂ(j27j17k7 n) S ma,X, fl(.jZa.jbkaz)'
z>—c2(j2.j1,k)

e We do all the computations and keep the couple (j1, k) only if
we obtain f; > 1 for some j, < j;.
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New upper bounds for the number of divisors function

Sketching the proof of the main theorem 3

@ This function has the property

A(n) S ﬂ(j27j17k7 n) S ma,X, fl(an.jbkaz)'
z>—c2(j2.j1,k)

e We do all the computations and keep the couple (j1, k) only if
we obtain f; > 1 for some j, < j;.

@ With the remaining possibilities, we do the same computation
with one more variable on the integers

— Q3 3 3 2 2
n=Ppy" Py " Phpy1 P Pipt1 " Pjy - Ppu+1 " Pk-

Patrick Letendre (joint work with Jean-Marie De Koninck) October 3, 2015 19 / 25



New upper bounds for the number of divisors function

Sketching the proof of the main theorem 4
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New upper bounds for the number of divisors function

Sketching the proof of the main theorem 4

@ We have to do this step four times. For the third and the fourth
step, we use the key lemma to bound the largest prime that can
divide, up to the power 4, 5 and 6, the possible counterexample
n that realises the maximum of \.
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Sketching the proof of the main theorem 4

@ We have to do this step four times. For the third and the fourth
step, we use the key lemma to bound the largest prime that can
divide, up to the power 4, 5 and 6, the possible counterexample
n that realises the maximum of \.

@ The other results use the same type of ideas.
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Further remarks 1

@ One can show that

2

n<x

log log x log log log x | < x log log x(log log log x)?

A(n
(n) log x log® x

?

from which we conclude that for almost all n < x,

A(n) = (14 0(1))

log log x log log log x (x — 00).

log x
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Further remarks 1

@ One can show that

2

n<x

log log x log log log x | < x log log x(log log log x)?

A(n
(n) log x log® x

?

from which we conclude that for almost all n < x,

A(n) = (14 0(1))

log log x log log log x (x — 00).

log x

@ There are finitely many numbers n with w(n) > 43 for which
A(n) > 1.
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New upper bounds for the number of divisors function
Further remarks 1

@ One can show that

2

n<x

log log x log log log x | < x log log x(log log log x)?

A(n)

?

log x log® x

from which we conclude that for almost all n < x,

A(n) = (14 0(1))

log log x log log log x

— .
log x (x = o0)

@ There are finitely many numbers n with w(n) > 43 for which
A(n) > 1.
@ The set of limit points of \(n) is the interval

1/6
{o, (H?:l |og1,,,.) log 6] — [0,1.145206. ...
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Further remarks 2

@ We have
[{n < x: A(n) > 1}] = (4 + o(1)) log* x

where 74 is some absolute constant.
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New upper bounds for the number of divisors function
Further remarks 2

@ We have
[{n < x: A(n) > 1}] = (4 + o(1)) log* x

where 74 is some absolute constant.

@ By using the special numbers H:(:1 p; for the lower bound and
the fundamental inequality for the upper bound, we obtain

_ loglogk —1 N (log log k)? — 3 log log k

A =1
w?rl;;ik (n) log k log” k
1
+0 k — )
<|og2k) (= o)
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