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Problem of Erdős: Consider solutions of the

equations

ϕ(n) = ϕ(n+ k), σ(n) = σ(n+ k)

for fixed k ∈ N, particularly k = 1.

Currently Unsolved: Are there are infinitely

many solutions?

Schinzel and Sierpiński (1958): The se-

quence ϕ(n+1)/ϕ(n) is dense in (0,∞). (Sim-

ilar result for σ).

Erdős-Mirsky Conjecture (Proved by Heath-

Brown, 1984): There infinitely many n for

which d(n + 1) = d(n). The same has been

proved for ω and Ω.
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Notation: Let A = {n ∈ N : ϕ(n) = ϕ(n + 1)}
and A(x) = #{n ≤ x : n ∈ A}. Similarly,

let B = {n ∈ N : σ(n) = σ(n + 1)} and let

B(x) = #{n ≤ x : n ∈ B}.

Theorem (Erdős, 1936:) The asymptotic

density of n with ϕ(n) < ϕ(n + 1) is 1/2, and

the same for ϕ(n) > ϕ(n + 1). Thus A has

asymptotic density 0. The same holds for B.

Theorem (Erdős, Pomerance and Sárközy,

1987): A(x) < x/ exp( 3√logx) for sufficiently

large x, and the same for B. It follows that∑
n∈A

1

n
<∞,

∑
n∈B

1

n
<∞

They conjecture that A(x) > x1−ε for every

ε > 0 and x ≥ x0(ε), and similarly for B.
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Theorem (Bayless, K): We have

1.4324884 <
∑
n∈A

1

n
< 441702.

Also,

0.080958 <
∑
n∈B

1

n
< 610838.

We have recently improved the upper bounds
to 95153 for A and 607740 for B.

Def: A multiperfect number is a number n

such that n|σ(n). Let M denote the set of
multiperfect numbers and M(x) its counting
function. It is conjectured that M is infinite.

Theorem (Erdős, 1956): M(x) ≤ x0.75+ε for
all ε > 0 and x ≥ x0(ε).

Theorem (Bayless, K):∑
n∈M

1

n
= 1.21440760859142719 . . . .
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Proposition (Bayless, K): There are infinitely

many n such that ϕ(n) = ϕ(n + k) for some

k < n0.2962. The same holds for σ.

Proof: Baker and Harman proved that

|ϕ−1(m)| > m0.7039

infinitely often. It is also known if ϕ(n) = m

then n < 3m log logm < m1+ε for all ε > 0 and

sufficiently large m. Thus ϕ−1(m) ⊂ [1,m1+ε]

has size greater than m0.7039. The result fol-

lows by the Pigeon Hole principle.
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Proposition (Bayless, K): If ϕ(n) = ϕ(n+ 1)

then ϕ(n)
n < 0.5 with precisely six exceptions:

n = 1, 3, 15, 255, 65535, 4294967295.
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Proposition (Bayless, K): If ϕ(n) = ϕ(n+ 1)

then ϕ(n)/n < 0.5 with precisely six exceptions,

when n is the square-free product of the first

k Fermat primes, k = 0, . . . ,5.

Sketch of Proof: We have

ϕ(n)

n
=
ϕ(n+ 1)

n+ 1

(
1 +

1

n

)
.

Thus by the product formula for ϕ,

∏
p|n

(
1−

1

p

)
=
(

1 +
1

n

) ∏
q|n+1

(
1−

1

q

)
.

Consider three cases, n is even, n is odd but

n+1 is not a power of two, or n+1 is a power of

two. (The third case yields the 6 exceptions.)
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Proposition (Bayless, K): If σ(n) = σ(n+ 1)

then σ(n)/n > 1.5.

Sketch of Proof: Use the estimate∏
p|n

(
1 +

1

p

)
≤
σ(n)

n
<
∏
p|n

(
1 +

1

p− 1

)

valid for n > 1. Consider three cases: n is odd,

n is even but not a power of 2, or n is a power

of two (the third case cannot occur).
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Explicit Bounds on the sum of reciprocals

of n such that ϕ(n) = ϕ(n+ 1).

Small Range: n ≤ 1012. An exhaustive list of

all 5236 solutions in this range was computed

by Noe and McCranie (OEIS). We compute to

obtain ∑
n∈A

n≤1012

1

n
= 1.4324884 . . .
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Middle Range: 1012 < n ≤ e106
.

We need a very large cutoff to get a good
upper bound on the large range. We feared
the worst: ∑

1012<n≤e106

1

n
< 106.

However Carl Pomerance suggested to us that
solutions n ≡ 1 (mod 3) appear to be rare.

Observation: All solutions 1 < n ≤ 1012 are
congruent to 2 or 3 (mod 6), with relative fre-
quencies very close to 0.5. We cannot find any
exceptions n > 1012. This led us to the fol-
lowing result.

Lemma (Bayless, K): Suppose n > 1 and
ϕ(n) = ϕ(n+ 1).
(1.) If n ≡ 5 (mod 6) then ω(n) ≥ 33.
(2.) If n ≡ 0 (mod 6) then ω(n+ 1) ≥ 33.
(3.) If n ≡ 1 (mod 6) and gcd(n,35) = 1 then
ω(n) ≥ 27.
(4.) If n ≡ 4 (mod 6) and gcd(n + 1,35) = 1
then ω(n+ 1) ≥ 27.
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Explicit Hardy-Ramanujan Inequality

Let πk(x) = #{n ≤ x : ω(n) = k}.

πk(x) ∼
x(log logx)k−1

(k − 1)! logx
.

The same asymptotic formula also applies to:

τk(x) = #{n ≤ x : Ω(n) = k},

π
sf
k (x) = #{n ≤ x : ω(n) = Ω(n) = k},

υk(x) = #{n ≤ x : Ω(n) ≤ k}.

These are variants of Landau’s 1900 theorem,

proved for τk(x) by induction on k.
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Hardy-Ramanujan Inequality: C1, C2 > 0.

πk(x) ≤
C1x(log logx+ C2)k−1

(k − 1)! logx
.

Theorem (Bayless, Klyve) For x ≥ 1012,

π
sf
k (x) ≤

1.0924x(log logx+ 0.2622)k−1

(k − 1)! logx
.

Theorem (Bayless, K) For x ≥ 1012,

πk(x) ≤
1.0989x(log logx+ 1.1174)k−1

(k − 1)! logx
.

This bounds the contribution to the middle

range from 118 residue classes mod 210.
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The Large Range: We follow the proof of

Erdős, Pomerance and Sárközy, making all im-

plied constants explicit as we proceed.

Five classes of numbers are dealt with sepa-

rately, and then the count of remaining num-

bers is bounded. We can then apply partial

summation to bound the contribution to the

reciprocal sum.

For instance, their proof uses P (n) ≥ L2, where

L(x) = exp
(

1

8
(logx)2/3 log logx

)
and addresses the count of L2-smooth num-

bers n (i.e. P (n) ≤ L2) up to x separately.
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De Bruijn’s Ψ function:

Ψ(x, y) = #{n ≤ x : P (n) ≤ y}.

Theorem (de Bruijn): There exists c > 0

such that

Ψ(x, y) ≤ x exp(−cu logu)

where u = logx/ log y.

Lemma (Bayless, K): For x ≥ 1021 we have

Ψ(x, y) ≤ 1.033x exp(−0.7u logu).

Conclusion: Our best bound on the reciprocal

sum comes from this improvement (addition

of the logu term above), and by adjusting the

cutoffs for two different large ranges, as well

as other coefficients.
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Some open problems.

Improve the bounds on these reciprocal sums.

Do there exist solutions n > 1 of the equa-

tion ϕ(n) = ϕ(n+ 1) that are not 2 or 3 mod

6?
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Here are the five assumptions made in the proof
of Pomerance, Erdős and Sárközy. Counts of
integers violating the assumptions are bounded
separately. Here

`(x) = exp( 3
√

logx)

and

L(x) = exp
(

1

8
(logx)2/3 log logx

)
.

1. P (n) ≥ L2 and P (n+ 1) ≥ L2.

2. If ka divides n or n + 1 where a ≥ 2, then
ka ≤ `3.

3. min{n/P (n), (n+ 1)/P (n+ 1)} ≥ L.

4. min{P (ϕ(m)), P (ϕ(m′))} ≥ `4, for m = n/P (n)
and m′ = (n+ 1)/P (n+ 1).

5. P (n) > P (n+ 1).
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