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A worked example

The umbrella question

Given group G and field F, is there an extension with

Gal(K/F)~ G
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The umbrella question

Given group G and field F, is there an extension with

Gal(K/F)~ G

If we have 1 - N — G — @ — 1, solve “step by step”

@ Find extension with Gal(K/F) ~ Q
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A worked example

The umbrella question

Given group G and field F, is there an extension with

Gal(K/F)~ G

If we have 1 - N — G — @ — 1, solve “step by step”

e Find extension with Gal(K/F)

e Find L/K so that Gal(L/K) N
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A worked example

The umbrella question

Given group G and field F, is there an extension with

Gal(K/F)~ G

If we have 1 - N — G — @ — 1, solve “step by step”

@ Find extension with Gal(K/F) ~ Q
e Find L/K so that Gal(L/K) ~ N
e "“Stitching” condition: does Galois S.E.S. match?
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A working example: the Heisenberg group

Hp = (x,y,z:xP=yP =2 =1;[x,y] = 2)
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A worked example

A working example: the Heisenberg group

Hp = (x,y,z:xP=yP =2 =1;[x,y] = 2)
@ One of the two nonabelian groups of order p3

@ Realized by :a,b,ceF, ) C GL(F),)
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A worked example

Heisenberg via embeddings: classic approach

Constructing K/F and L/K
If &, € F, then K = F(¢/a,¥/b) and L= K(y/z)
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A worked example

Heisenberg via embeddings: classic approach

Constructing K/F and L/K
If &, € F, then K = F(¢/a,¥/b) and L= K(y/z)

Stitching condition

dx € F(\’/E) with NF(€/5)/FX = b, and

z=rxP"o (xP7%) - 0P (x) for some r € F*
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A worked example

Heisenberg via embeddings: new approach
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A worked example

Heisenberg via embeddings: new approach

Andrew Schultz p-groups as Galois groups



Preliminaries
[ee]eY Tolelele]

A worked example

Heisenberg via embeddings: new approach

1—=Z/pxZ/p H, Z]p 1

Constructing K/F and L/K
If {, € F, then K = F(¥/a) and L= K(yy,/z)
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A worked example

Heisenberg via embeddings: new approach

1—=Z/pxZ/p H, Z]p 1
I I
Gal(L/K) Gal(K/F)

Constructing K/F and L/K
If {, € F, then K = F(¥/a) and L= K(yy,/z)

Stitching condition
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A worked example

Kummer theory and Galois actions

How can we detect “stitching” for elem. p-abelian extension?
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A worked example

Kummer theory and Galois actions

How can we detect “stitching” for elem. p-abelian extension?

Our setup:

e Gal(L/K) ~ @*Z/p corresponds to N C K*/K*P
o G,=Gal(K/F)= (o) ~Z/p"
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A worked example

Kummer theory and Galois actions

How can we detect “stitching” for elem. p-abelian extension?

Our setup:

e Gal(L/K) ~ @*Z/p corresponds to N C K*/K*P
o G,=Gal(K/F)= (o) ~Z/p"

Fact: L/F Galois iff N is F,[G]-module
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A worked example

Kummer theory and Galois actions

How can we detect “stitching” for elem. p-abelian extension?

Our setup:

e Gal(L/K) ~ @*Z/p corresponds to N C K*/K*P
o G,=Gal(K/F)= (o) ~Z/p"

Fact: L/F Galois iff N is F,[G]-module
Fact: M is indecomposable and dimg,(M) = ¢ implies

M~ A, :=TF,[G]/(c — 1)
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A worked example

Hp3 extensions via modules

1——=7/pZ x 7] pZ H 7] pZ

p

1
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Hp3 extensions via modules

1——=7/pZ x 7] pZ H 7] pZ

p

1

Because dimg, (Gal(L/K)) = 2, either
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A worked example

Hp3 extensions via modules

1——=7/pZ x 7] pZ H 7] pZ

p

1

Because dimg, (Gal(L/K)) = 2, either

° N:AiB2
(] NZAQ
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A worked example

Hp3 extensions via modules

1——=7/pZ x 7] pZ H 7] pZ

p

1

Because dimg, (Gal(L/K)) = 2, either

o N~ AP? < this makes Gal(L/F) abelian
o N~ A2
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A worked example

Hp3 extensions via modules

1——=7/pZ x 7] pZ H 7] pZ

p

1

Because dimg, (Gal(L/K)) = 2, either

o N~ AP? < this makes Gal(L/F) abelian
o N~ A2

Bad news: N ~ A, can't be enough to ensure
Gal(L/F) ~ Hps
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A worked example

Hp3 extensions via modules

Problem: There are (typically) two ways to fill in

1 Ay 7 G 1
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A worked example

Hp3 extensions via modules

Problem: There are (typically) two ways to fill in

1 Ay 7 G 1

If L/K <> (7), there is a function to detect which is Gal(L/F)
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A worked example

Hp3 extensions via modules

Problem: There are (typically) two ways to fill in

1 Ay 7 G 1

If L/K <> (7), there is a function to detect which is Gal(L/F)

o—1

e(v) = ¢/ Nk/r(7)
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A worked example

Hp3 extensions via modules

Problem: There are (typically) two ways to fill in

1 Ay 7 G 1

If L/K <> (7), there is a function to detect which is Gal(L/F)

o—1

e(v) = ¢/ Nk/r(7)

@ v € ker(e) = Gal(L/F) ~ A x G
o v ¢ ker(e) = Gal(L/F) ~ Ao G

Andrew Schultz
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A worked example

Finishing our example

~7/p G~Z/p
() =~ A (7) = A
v ¢ ker(e) v € ker(e)
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A worked example

Finishing our example

G~Z/p G~Z/p G~Z/p G~Z/p
{ (v) = A } { (7) = A } { <7>~A?2} { <7>NA§92}
v ¢ ker(e) 7 € ker(e) v € ker(e) v ¢ ker(e)

| | | |

My ~A,eG  Hp~AyxG (Z)p)*? Z./p ® 7/ p?
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Good news

This paradigm gives machinery to study any embedding
problem of form

1—=®%Z/p— G —=17Z/p" —1

regardless of base field
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This paradigm gives machinery to study any embedding
problem of form

1—=®%Z/p— G —=17Z/p" —1

regardless of base field, mostly in terms of linear algebra.
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Broadening the scope

Good news

This paradigm gives machinery to study any embedding
problem of form

11— G*Z)p— G —— 7 /p" —= 1

regardless of base field, mostly in terms of linear algebra.

Replace K*/K*P with appropriate parameterizing space

K> /K> if ¢, € F
J(K) =1 K/p(K) if char(F) =p
K(&5)"/K(&p) Ple=t if char(F) # pand &, & F
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Broadening the scope

Good news

This paradigm gives machinery to study any embedding
problem of form

1 @*Z)p—— G ——Tp"—1

regardless of base field, mostly in terms of linear algebra.

Solvability of particular embedding problem determined by
existence of certain modules in J(K)
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Broadening the scope

More good news

Solvability of embedding problems determined by existence of
appropriate modules in J(K). And we know structure of J(K)!
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Broadening the scope

More good news

Solvability of embedding problems determined by existence of
appropriate modules in J(K). And we know structure of J(K)!

Structure of J(K) - [B,M,S,-]
If Gal(K/F) ~ Z/p", then

JK)= (0O Yed -0 Y,
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Broadening the scope

More good news

Solvability of embedding problems determined by existence of
appropriate modules in J(K). And we know structure of J(K)!

Structure of J(K) - [B,M,S,-]
If Gal(K/F) ~ Z/p", then

JK)= (0O Yed -0 Y,

where
o Y ~ (Ap;)63

0;

and (y) ~ Api(K/F)+1
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Broadening the scope

More good news

Solvability of embedding problems determined by existence of
appropriate modules in J(K). And we know structure of J(K)!

Structure of J(K) - [B,M,S,-]
If Gal(K/F) ~ Z/p", then

JK)= (0O Yed -0 Y,

where
oY ~ (Ap;)®ai and (x) ~ A/
o x ¢ ker(e) and Y; C ker(e) for 0 < i < n,
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Counting extensions

Who cares?

Now that we have this machinery, what does it do for us?
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Who cares?

Now that we have this machinery, what does it do for us?

@ Enumerate extensions with prescribed Galois groups
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Counting extensions

Who cares?

Now that we have this machinery, what does it do for us?

@ Enumerate extensions with prescribed Galois groups
@ Put structural restrictions on absolute Galois groups
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Realization multiplicity

A few notations to help us count extensions
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A few notations to help us count extensions

v(G, F) = #{G-extn's of F}
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Counting extensions

Realization multiplicity

A few notations to help us count extensions
v(G, F) = #{G-extn's of F}

V(G — Q,K/F) = #{Soln's to G — Q over K/F}
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Counting extensions

Realization multiplicity

A few notations to help us count extensions
v(G, F) = #{G-extn's of F}
V(G — Q,K/F) =+4{Soln's to G — Q over K/F}

v(G) = mFin {v(G,F):v(G,F) >0}
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Counting extensions

Realization multiplicity

A few notations to help us count extensions
v(G, F) = #{G-extn's of F}
V(G — Q,K/F) =+4{Soln's to G — Q over K/F}

v(G) = mFin {v(G,F):v(G,F) >0}

v(Z/n) = 1, since F, has only one Z/n extension
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Counting extensions

Relating M3 and H,3

Brattstrom proved: if {,» € F or char(F) = p, then

v(Mps, F) = (p* — 1)v(Hps, F)
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Counting extensions

Relating M3 and H,3

Brattstrom proved: if {,» € F or char(F) = p, then

v(Mps, F) = (p* — 1)v(Hps, F)

Using modules, we can prove

v(Mys, F) = (0 —1)u(H,s, F)+ ((dimi/(F)>p B (din; m)p) %

where M is subspace of J(F) where Z/p? — Z/p is solvable
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Counting extensions

H 3 as the key

Count on H,s-extensions is critical for other groups too:
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H 3 as the key

Count on H,s-extensions is critical for other groups too:

V(AxG — G, K/F) =
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Counting extensions

H 3 as the key

Count on H,s-extensions is critical for other groups too:
v(AxG - G,K/F) =

by = G.KJF)- (P vt = Gk/F )
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Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups (p > 2):
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Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups (p > 2):

V(M) = p, v(My xZ/p) = p'—1, v((Z/p)x Hys) = 1.
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Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups (p > 2):

V(M) = p, v(My xZ/p) = p'—1, v((Z/p)x Hys) = 1.

New results:

o v ((A,xZ/p) x (Z/p)*) =p*+p
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Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups (p > 2):

V(M) = p, v(My xZ/p) = p'—1, v((Z/p)x Hys) = 1.

New results:

o v ((A,xZ/p) x (Z/p)*) =p*+p
o v((ArxZ/p)x (Z/p)<) =p+1for2<l<p
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Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups (p > 2):

V(M) = p, v(My xZ/p) = p'—1, v((Z/p)x Hys) = 1.

New results:

o v ((A,xZ/p) x (Z/p)*) =p*+p
o v((ArxZ/p)x (Z/p)<) =p+1for2<l<p
o V(Ao Z/p)=p*—1for2<l<p
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Counting extensions

Minimal realization multiplicity

Known results for nonabelian p-groups (p > 2):

V(M) = p, v(My xZ/p) = p'—1, v((Z/p)x Hys) = 1.

New results:

o v ((Ay xZ/p) x (Z/p)k) = p* +p

o v((ArxZ/p)x (Z/p)<) =p+1for2<l<p
o V(Ao Z/p)=p*—1for2<l<p

° V(AfkaG) > pk

Andrew Schultz p-groups as Galois groups
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Restricting Absolute Galois groups

Automatic realizations

Automatic realization
We say that H automatically realizes G when

v(H, F) > 0 implies v(G, F) > 0.
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Restricting Absolute Galois groups

Automatic realizations

Automatic realization
We say that H automatically realizes G when

v(H, F) > 0 implies v(G, F) > 0.

We write this H = G.
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Restricting Absolute Galois groups

Automatic realizations

Automatic realization
We say that H automatically realizes G when

v(H, F) > 0 implies v(G, F) > 0.

We write this H = G.

Example: If G - Q, then G = Q.
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Restricting Absolute Galois groups

Automatic realizations

Automatic realization

We say that H automatically realizes G when
v(H, F) > 0 implies v(G, F) > 0.

We write this H = G.

Example: If G — @, then G = Q. <— (These are stupid.)
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Restricting Absolute Galois groups

Automatic realizations

Automatic realization

We say that H automatically realizes G when
v(H, F) > 0 implies v(G, F) > 0.

We write this H = G.

Example: If G — @, then G = Q. <— (These are stupid.)

Example: If p is odd, then Z/p = Z/p?
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Restricting Absolute Galois groups

Automatic realizations

Automatic realization
We say that H automatically realizes G when

v(H, F) > 0 implies v(G, F) > 0.

We write this H = G.

Example: If G — @, then G = Q. <— (These are stupid.)

Example: If p is odd, then Z/p = 7Z/p* = 7/ p3
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Restricting Absolute Galois groups

Automatic realizations

Automatic realization
We say that H automatically realizes G when

v(H, F) > 0 implies v(G, F) > 0.

We write this H = G.

Example: If G — @, then G = Q. <— (These are stupid.)

Example: If p is odd, then Z/p = Z/p* = Z/p* = - -- = 7,
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Restricting Absolute Galois groups

Previously known automatic realizations
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Restricting Absolute Galois groups

Previously known automatic realizations

Several automatic realizations for small 2-groups

@ Q= Qg A Dy= Dy
o Qi =7/4

e SDig = 7Z/4

o A G & Qs
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Restricting Absolute Galois groups

Previously known automatic realizations

Several automatic realizations for small 2-groups

@ Q= Qg A Dy= Dy
o Qi =7/4

e SDig = 7Z/4

o A G & Qs

Fewer for p > 2:
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Restricting Absolute Galois groups

Previously known automatic realizations

Several automatic realizations for small 2-groups

@ Q= Qg A Dy= Dy
o Qi =7/4

e SDig = 7Z/4

o A G & Qs

Fewer for p > 2:

o Z/p™ x Z/p*= = Z/p* x Z/p" iff
min(ay, a2) > min(by, by)
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Restricting Absolute Galois groups

Previously known automatic realizations

Several automatic realizations for small 2-groups

@ Q= Qg A Dy= Dy
o Qi =7/4

e SDig = 7Z/4

o A G & Qs

Fewer for p > 2:
o 7Z/p x Z/p®= = 7/p™ x Z/p> iff

min(ay, a2) > min(by, by)
] Hp3 = Mpa
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Restricting Absolute Galois groups

Previously known automatic realizations

Several automatic realizations for small 2-groups

@ Q= Qg A Dy= Dy
o Qi =7/4

e SDig = 7Z/4

o A G & Qs

Fewer for p > 2:
o 7Z/p x Z/p®= = 7/p™ x Z/p> iff

min(ay, az) > min(by, by)
° Hp3 = Mpa = Mp3 A Z/p2
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Restricting Absolute Galois groups

Previously known automatic realizations

Several automatic realizations for small 2-groups

@ Q= Qg A Dy= Dy
o Qi =7/4

e SDig = 7Z/4

o A G & Qs

Fewer for p > 2:

o 7Z/p x Z/p®= = 7/p™ x Z/p> iff
min(ay, a2) > min(by, by)

° Hp3 = Mpa = Mp3 A Z/p2

@ H,s x K= My x K for any finite group K
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Restricting Absolute Galois groups

Some new automatic realizations
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Restricting Absolute Galois groups

Some new automatic realizations

@ Ay x G = Ay x G for [ # pk
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Restricting Absolute Galois groups

Some new automatic realizations

@ Ay x G = Ay x G for [ # pk
o AreG= A, xGforl#p+1
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Restricting Absolute Galois groups

Some new automatic realizations

@ Ay x G = Ay x G for [ # pk
o AreG= A, xGforl#p+1
© Ao G = A,_1xGforl #pk+1
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Restricting Absolute Galois groups

Some new automatic realizations

@ Ay x G = Ay x G for [ # pk

o AreG= A, xGforl#p+1

© Ao G = A,_1xGforl #pk+1

0 Ap-11 X G = A1y, 0Gforl < k<p?—prl
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Restricting Absolute Galois groups

Some new automatic realizations

@ Ay x G = Ay x G for [ # pk

o AreG= A, xGforl#p+1

© Ao G = A,_1xGforl #pk+1

0 Ap-11 X G = A1y, 0Gforl < k<p?—prl

Even works for non-cyclics: for any F,[G]-module M,

MxG=[M]xG

Andrew Schultz p-groups as Galois groups



Applications
ocoe

Restricting Absolute Galois groups

Some new automatic realizations

@ Ay x G = Ay x G for [ # pk

o AreG= A, xGforl#p+1

© Ao G = A,_1xGforl #pk+1

0 Ap-11 X G = A1y, 0Gforl < k<p?—prl

Even works for non-cyclics: for any F,[G]-module M,
MxG=[M]xG

Example: a group of size 3125 = a group of size 48828125
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