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Basic Definitions

Mk (Γ1(N)),Sk (Γ1(N)): classical modular forms and cuspforms
Mk (Γ1(N), ε),Sk (Γ1(N), ε) : subspaces with specified character

When a prime p divides N, recall that the Hecke operator, Up,
acts on Mk (Γ1(N)), preserving these subspaces. The action of
Up on q-expansions at infinity is given by

Up

(∑
anqn

)
=
∑

anpqn.

Now, let f be a normalized eigenform defined over a number
field K , so that ap is its Up eigenvalue. Embed K into Cp. Then
the slope of f is the p-adic valuation of ap where v(p) = 1.

Note: The slope depends on both f and the embedding into Cp.

Open Problem: Determine the slopes of Mk (Γ1(N), ε), as a
function of (p, k ,N, ε) and the embedding.
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Kilford-McMurdy for Γ1(49)

Fix a primitive 42nd root of unity, ζ, and let χ be the Dirichlet
character of conductor 49 defined by χ(3) = ζ. Let K1 and K2
be the 7-adic completions of Q[ζ] so that v(ζ + 1) > 0 and
v(ζ + 4) > 0 respectively.

(1) Sk (Γ1(49), χ7k−6) is diagonalized by U7 over K1. The slopes
of U7 on this space are the values less than k − 1 in{

1
6 ·
⌊

9i
7

⌋
: i ∈ N

}
.

(2) Sk (Γ1(49), χ8−7k ) is diagonalized by U7 over K2. The slopes
of U7 on this space are the values less than k − 1 in{

1
6 ·
⌊

9i+6
7

⌋
: i ∈ N

}
.

(Each slope corresponds to a one dimensional eigenspace.)
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Example
Let ψ(3) = γ a primitive 21st root of unity. Then S2(Γ1(49), ψ)
has one family defined over Q(γ, α) where α is a root of

x4 + (γ5 + 1)x3 + (γ10 − 5γ5 + 1)x2

+ (γ11 − 4γ10 − γ7 − γ6 − 2γ5 − γ3 + 2γ2 − γ)x

+ (2γ10 + γ9 + γ8 + γ7 − γ6 − γ5 − γ4 + γ2 + γ + 1).

a7 = (γ11 − γ10 + γ8 − γ7 − γ6 + γ5 − γ3 + γ2 − 1)α3

+ (γ8 − γ6 + γ5 − γ4 − γ3 + γ2)α2

+ (4γ11 − γ6 + γ5 + 4γ4 − γ3 + γ2 − γ)α

−(γ11−γ10−3γ9+γ8−γ7−2γ6+2γ5+γ4−3γ3+2γ2+γ−3).

The theorem applies over K1 if we take γ = ζ8, since

χ7(2)−6 = χ8 = γ.
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Example (cont)

Choose the uniformizer π1 = −ζ8 + ζ6 − ζ4 + ζ for K1. Then
v(π1) = 1/6. The roots for α are defined over K1 with the
following approximations:

α1 = 4 + 5π1 + 1π2
1 + 2π3

1 + 3π4
1 + 5π5

1 + · · ·
α2 = 5 + 4π1 + 2π2

1 + 3π3
1 + 4π4

1 + 1π5
1 + · · ·

α3 = 4 + 1π1 + 5π2
1 + 4π3

1 + 1π4
1 + 6π5

1 + · · ·
α4 = 5 + 5π2

1 + 4π3
1 + 4π5

1 + 2π6
1 + · · ·

Plugging these values into a7 we find π1-adic valuations of 1,
2, 3, and 5. So the theorem is verified in this special case.



Outline of the Proof
In order to use p-adic analysis to prove results about slopes of
classical modular eigenforms for Γ1(N), these are the standard
steps:

(1) Use the geometry of X1(N) to embed Mk (Γ1(N)) into a
natural p-adic family of modular forms (“overconvergent”
modular forms). Verify that Up extends to the family.

(2) Compute the Up slopes of all of the overconvergent
eigenforms in your family using analytic techniques.

(3a) Use a theorem of Coleman to conclude that all of the
overconvergent eigenforms of small slope are classical. Thus,
you have constructed a certain number of classical eigenforms
with specified slopes.

(3b) Compare with known formulas for the total number of
classical eigenforms with a given character.

(4) Keep fingers crossed that (3a) and (3b) are the same!!
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Overconvergent Modular Forms of Level 49
Our overconvergent forms are defined intrinsically, following
Coleman’s construction in “Classical and Overconvergent
Modular Forms of Higher Level.”

Let f : E1(49)→ X1(49) be the universal generalized elliptic
curve over X1(49), and ω = f∗Ω1

E1(49)/X1(49). Then Mk (Γ1(49)) is

just the holomorphic sections of ω⊗
k
. Overconvergent forms are

holomorphic sections over W = W1(49), a certain wide-open
neighborhood of the cusp∞, in the analytification of the curve.

We want to work on X0(49), because we have good explicit
equations. Fortunately, there are Eisenstein series, E1,χ and
E1,τ which are holomorphic and non-vanishing over W .
Therefore, we can define an isomorphism

M0(Γ0(49))(D) ∼= Mk (Γ1(49), χτ k−1)(W ),

where D is the wide open disk of X0(49) over which W lies (via
the forgetful map).
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General Setup - The Picture

0
D X (49)

W X (49)
1

M0(Γ0(49))(D)→ Mk (Γ1(49), χτ k−1)(W )

f 7→ f · E1,χ · Ek−1
1,τ

Let Ũ7 be the induced linear operator on M0(Γ0(49))(D).



The Explicit Part of the Proof

Now we consider the following explicit model for X0(49).

y2 − 7xy(x2 + 5x + 7)

− x(x6 + 7x5 + 21x4 + 49x3 + 147x2 + 343x + 343) = 0

z2 = x(4x2 + 21x + 28)

Here, x = η1/η49 and y = η4
7/η

4
49. Also, t = x4/y is a

parameter on the genus 0 curve, X0(7), with divisor (0)− (∞),
which lifts to a parameter on D.

Taking s = 4
√

7/t , M0(Γ0(49))(D) has “basis” {s, s2, s3, · · · }.
Every form has a unique power series expansion in s, and the
forms of bounded norm are given by R7[[s]]⊗ C7. This implies
that the characteristic polynomials of the truncations of the
corresponding matrix representing Ũ7 converge in sup norm to
the characteristic series of Ũ7.



The Explicit Part of the Proof

Now we consider the following explicit model for X0(49).

y2 − 7xy(x2 + 5x + 7)

− x(x6 + 7x5 + 21x4 + 49x3 + 147x2 + 343x + 343) = 0

z2 = x(4x2 + 21x + 28)

Here, x = η1/η49 and y = η4
7/η

4
49. Also, t = x4/y is a

parameter on the genus 0 curve, X0(7), with divisor (0)− (∞),
which lifts to a parameter on D.

Taking s = 4
√

7/t , M0(Γ0(49))(D) has “basis” {s, s2, s3, · · · }.
Every form has a unique power series expansion in s, and the
forms of bounded norm are given by R7[[s]]⊗ C7. This implies
that the characteristic polynomials of the truncations of the
corresponding matrix representing Ũ7 converge in sup norm to
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A Truncation of the Large Matrix (k = 1 shown)

Write Ũ7(si) as a power series in s, and put the coefficients in
the i th column. This yields an infinite dimensional matrix that
represents Ũ7 in the basis {s, s2, . . . }. A truncation of the
corresponding matrix of 7-adic valuations, over K1, is as follows.2666666664

1/6 5/12 1/2 3/4 1 5/4 3/2
1/4 1/3 7/12 5/6 13/12 7/6 29/12
1/6 5/12 2/3 11/12 1 5/4 5/2
1/4 1/2 3/4 5/6 13/12 4/3 31/12
1/6 5/12 1/2 3/4 1 5/4 7/3
1/4 1/3 7/12 5/6 13/12 7/6 29/12
1/6 5/12 2/3 11/12 1 5/4 5/2

3777777775
Our theorem says that the sequence of slopes should be
{1/6,1/3,1/2,5/6,1,7/6,3/2, . . . } (almost the sequence of
column valuations). This will follow if the determinant of each
j × j truncation is larger than that of any other principle j × j
minor. To prove that, we consider the “column functions.”



“Column Functions”

Proposition: Approximations for Ũ7(si) for 1 ≤ i ≤ 7 over
K1(α) where α4 = −7 are as follows.

Ũ7(s1) ≡ 2απ1z/(x(x + π3
1)), v1 = 2, e1 ≥ 3

Ũ7(s2) ≡ 4α2π2
1/x , v1 = 4, e1 ≥ 5

Ũ7(s3) ≡ α3z/x2 + 5α3π2
1/x , v1 = 6, e1 ≥ 8

Ũ7(s4) ≡ 3α4z/x2 + 2α4π2
1(x + 4π3

1)/x2, v1 = 9, e1 ≥ 11

Ũ7(s5) ≡ 6α5z(x + π3
1)/x3, v1 = 12, e1 ≥ 13

Ũ7(s6) ≡ α6π1(x2 + 7)/x3, v1 = 14, e1 ≥ 15

Ũ7(s7) ≡ α7/t , v1 = 18, e1 ≥ 19

(A recursive formula kicks in from there.)

Note: 1
12v1(f ) denotes the minimal 7-adic valuation of f over D.



“Column Functions (cont)”

Scaling and reducing the column functions on the stable
reduction, we have the following functions and divisors.

(Z/(X (X − 1))) = (∞) + (−1,0)− (0,0)− (1,0)

(1/X ) = 2(∞)− 2(0,0)

(Z/X 2) = (1,0) + (−1,0) + (∞)− 3(0,0)

((X − 1)/X 2) = 2(1,0) + 2(∞)− 4(0,0)

(Z (X − 1)/X 3) = 3(1,0) + (−1,0) + (∞)− 5(0,0)

((X 2 − 1)/X 3) = 2(1,0) + 2(−1,0) + 2(∞)− 6(0,0)

(Z (X 2 − 1)/X 4) = 3(1,0) + 3(−1,0) + (∞)− 7(0,0).

By Riemann-Roch, no linear combination of the first j can ever
vanish to degree j + 1 at∞. Thus, the determinant of the j th

truncation approximates the j th coefficient of the characteristic
series and the slopes are as claimed.



Part II - Optimal Models for X0(pn) for Slope Calculations



Optimal Models for X0(pn) for Slope Calculations

In order to make a similar slope argument more generally, we
would need a model with the following properties.

(1) We must be able to write down a “Banach basis” for the
functions on W1(pn).

Canonical Example: Let W be the wide open in P1 whose
Cp-valued points satisfy

v((x − 1)(x − 2)(x − 3)) < 1

(the complement of three affinoid disks). Then

AK (W ) = K < X ,Y ,Z > /(XY −p(X −Y ), 2XZ −p(X −Z ),YZ −p(Y −Z )).

Think X = p
t−1 , Y = p

t−2 and Z = p
t−3 for a parameter t on P1.

In general, W1(pn) is isomorphic to the complement in P1 of ss
affinoid disks (one for each supersingular j-invariant).
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(2) Parameters should generate the Weierstrass parameters on
the “first” supersingular components.

g=2k+1

s.s.
k other

g=3k +2k2

(each)

2g=3k +2k
(each)

g=0g=0

j=1728

j=0

g=6k+5, #=24k+24

g=6k+5, #=12k+12

g=6k+5, #=8k+8

g=6k+5

g=3k+2

g=2k+1

g=6k+5

g=3k+2

regions

Stable reduction of X0(p3) when p = 12k + 11 is shown. The
left-most genus 0 vertical component is the reduction of
W1(p3). It intersects the components, YA

2 1, which have the
equation

y2 = x (p+1)/i(A) − 1.



Candidate Model for X0(p)

t =

(
η1

ηp

)e1

x =

(
dt/t

(η1ηp)2

)e2

If p = 12k + 1, we have: (e1, e2) = (2, 6) and

(t) = k(0)− k(∞)

(x)neg = −(6k + 1)(0)− (6k + 1)(∞).

If p = 12k + 5, we have (e1, e2) = (6, 2) and

(t) = (3k + 1)(0)− (3k + 1)(∞)

(x)neg = −(2k + 1)(0)− (2k + 1)(∞).

If p = 12k + 7, we have (e1, e2) = (4, 3) and

(t) = (2k + 1)(0)− (2k + 1)(∞)

(x)neg = −(3k + 2)(0)− (3k + 2)(∞).

If p = 12k + 11, we have (e1, e2) = (12, 1) and

(t) = (6k + 5)(0)− (6k + 5)(∞)

(x)neg = −(k + 1)(0)− (k + 1)(∞).



Properties and Example

Important Fact: The Atkin-Lehner involution, w1, fixes x and
satisfies

w∗
1 t = p(e1/2)

t .

Example: X0(17) has the equation:

t3x4 + (−3934t3)x3 + (−8608t4 + 2667641t3 − 42291104t2)x2

+ (−2944t5 − 408968t4 − 38771644t3 − 2009259784t2 − 71061003136t)x

− 256t6 − 79328t5 − 11950529t4 − 1059834654t3

− 58712948977t2 − 1914785073632t − 30358496383232 = 0

It’s actually much nicer. For example, f (0, t) = t3 · [g(t) + g( 173

t )],
where

g(t) = −256t3 − 79328t2 − 11950529t − 529917327.

It’s almost certainly possible to compute slopes for specific p
using this model - less clear what can be done in general.


