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First of all, what IS percolation?

 Imagine a large square lattice of points, with (green) 
bonds     between neighboring points put in place with 
(independent) probability p.  A given configuration might 
look like this:



The occupied bonds form clusters.  It is the geometric 
properties of these clusters that are of interest.  

When p is small (near 0), the lattice will be mostly 
empty (for the great majority of configurations).  When p 
is large (near 1), it will be mostly full.  If we let the lattice 
get very large, there is rigorously known to be a phase 
transition (at p = pc = 1/2 for the bond model shown).  

The results discussed here are all at pc.



At pc, on a large lattice clusters are quite ramified (fractal).  
Here is a single cluster:



For a large, rectangular lattice of aspect ratio r, the 
crossing probabilities:  
∏h(r), the probability of a horizontal crossing (a cluster 
connecting the two vertical sides), and 
∏hv(r), the probability of connecting all four sides of the 
rectangle (horizontal-vertical).
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CROSSING PROBABILITIES



It is convenient to define ∏hnv, the probability of a 
horizontal but not vertical crossing

∏hv = ∏h - ∏hnv
________________________________

Understanding the phase transition:

For p < pc, clusters are a.s. small, so ∏h(r) = 0. For  
p > pc, they are a.s. large, so ∏h(r) = 1.  Only for      

p = pc is ∏h a non-trivial function of r.



 Explicit formulas for the crossing probabilities were first 
found by physicists using conformal field theory.  Cardy’s 

formula for the rectangle:

Here the aspect ratio r enters via the cross–ratio λ(r) of the 
image points in the upper half plane of the four corners 

under a conformal map.  
 A rigorous derivation on the triangular lattice was given 

later by Smirnov, this year’s Fields medalist.

Πh(r) =
2π

√
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Γ(1/3)3
λ1/3

2F1(1/3, 2/3; 4/3; λ).



Some years ago, Bob Ziff noticed that 
 

with

and η the Dedekind function.  Thus, ∏’h is a 
modular form of weight 2 (on the full modular 

group).

Π′
h(λ(r)) = −4

√
3 C η(ir)4



Modular properties require a function to have 
certain simple transformation properties under

S: z → -1/z (with z = ir)
and

T: z → z+1 
(or combinations of these operations).  Here, the 

behavior under S follows directly from the physical 
symmetries of the problem, but the T behavior 

comes from the structure of the crossing formulas 
themselves and has no obvious physical origin.



Explicitly

z-2 ∏’h(-1/z) =: ∏’h(z)|2S = -∏’h(z)
∏’h(z)|T2 = e2πi/3∏’h(z)

while

∏’hnv(z)|2S = ∏’hnv(z) - C ∏’h(z)
∏’hnv(z)|T2 = ∏’hnv(z)

The operations S and T2 generate the theta-group  
Γθ.



(PK and Don Zagier)

The unusual modular behavior of ∏’hnv(r) leads to 
the definition of a new modular object, the nth-order 

modular form. 
Further, ∏’h(r) is completely determined by a 
simple modular argument that assumes its 

physical symmetry and generic behavior under T.
These modular properties are surprising, since 

they occur on a rectangle, which lacks the 
apparently required symmetry.  



(∏hnv can be written as a double integral of 
pnb(x).)

More recently, Jake Simmons, Bob Ziff, and PK 
have found three new crossing-type probabilities.  
We consider the probability density pnb(λ(r)) of a 

cluster that connects the upper left and upper right 
points of the rectangle, with no lower horizontal 

crossing, but is conditioned to not connect to the 
bottom.
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Conformal field theory gives

(and similar results for two related quantities).  We 
have proven two theorems:

I. pnb(z) is a weakly holomorphic second-order 
modular form on Γ(2) of weight 0 and type (1,χ). 

 What does this mean?

pnb(λ(r)) =
(1 + λ)2F1(1, 4/3; 5/3;λ) + 2

4
√

3π(1− λ)



Weakly holomorphic:  pnb(z) is allowed to diverge 
exponentially at the cusps.  Its leading terms are 

(1,q-5/6,q2/3) at 
(∞,0,-1), respectively.

Second-order of weight 0 and type (1,χ): Under any 
elementsγ andδ of Γ(2),

pnb(z)|0,1(γ-1)|0,χ(δ-1) = 0.

Here χ is the character of η4.  Γ(2) is the group of 
matrices in SL2(Z) congruent to I mod(2).



2.  To state the next (Hamburger-type) theorem, we 
first need to define a conformal block (of dimension 
one).  For our purposes, this is just a holomorphic 

function P(z) with power series expansion
P(z) = Σn=0 an  eπ i(n+1)z 

with a0 ≠ 0.



where g2 := ST-2S-1 can be taken as a generator of 
the group Γ(2).  Further suppose that P(-1+i/r) and 

P(i/r) are bounded as r→∞.  

P̃ (z) = P (z) +
1

4
√

3
λ′

λ

(
λΠ′

h

λ′

)′

and suppose
P̃ |4 g2 = P̃

along some curve in the upper half-plane,

Set



Then

P (z) =
(λ′(z))2

λ(z)
pnb(z)



Remarks:

A. If we let z = ir/(1+2ir), r > 0 be the curve in the 
condition, then the lhs of the equation is in the 

physical region, i.e. z = ir. 

B. The only physical input here is ∏’h.  The other 
two new crossing-type quantities can be 

characterized with similar theorems.  Hence all 
three can be obtained with only ∏’h as physical 
input.  This suggests some unknown connection 

between the physical quantities.



There is another interesting result showing the 
interconnection of these quantities.  Define

φ(z) =
C

2
(Πhnv(λ(z))′

(Πh(λ(z))′

(ϕ is in fact a weakly holomorphic second-order 
modular form of weight 0 and type (1,χ*)).  One 

can show that ϕ depends only on λ:

φ(z) =
1

28/3
λ(z)2/3

2F1(1/3, 2/3; 5/3;λ(z))



and further that

pnb(z) =
22/3

√
3 π

1 + λ(z)
λ(z)2/3 (1− λ(z))5/3

φ(z) +
1

2
√

3 π

1
1− λ(z)

i.e., is linear in ϕ with coefficients rational in λ1/3 
and (1-λ)1/3.  The other two crossing-type quantities 

can be expressed similarly.



SUMMARY

An interesting and surprising connection between 
physics and modular forms arises in examining 

crossing and crossing-type formulas in percolation.



Peter Kleban and Don Zagier, Crossing 
Probabilities and Modular Forms, Journal of 
Statistical Physics, p. 431, vol. 113, (2003).

N. Diamantis and P. Kleban, New percolation 
crossing formulas and second-order modular 
forms, Communications in Number Theory and
Physics, p. 1, vol. 3, (2009).

REFERENCES


